This package provides a C++ backend for multivariate phylogenetic comparative models implemented in the R-package PCMBase'. Can be used in combination with PCMBase to enable fast and parallel likelihood calculation. Implements the pruning likelihood calculation algorithm described in Mitov et al. (2020) <doi:10.1016/j.tpb.2019.11.005>. Uses the SPLITT C++ library for parallel tree traversal described in Mitov and Stadler (2018) <doi:10.1111/2041-210X.13136>.
There are three sets of functions. The first produces basic properties of a graph and generates samples from multinomial distributions to facilitate the simulation functions (they maybe used for other purposes as well). The second provides various simulation functions for a Potts model in Potts, R. B. (1952) <doi:10.1017/S0305004100027419>. The third currently includes only one function which computes the normalizing constant of a Potts model based on simulation results.
Computes normalized cycle threshold (Ct) values (delta Ct) from raw quantitative polymerase chain reaction (qPCR) Ct values and conducts test of significance using t.test(). Plots expression values based from log2(2^(-1*delta delta Ct)) across groups per gene of interest. Methods for calculation of delta delta Ct and relative expression (2^(-1*delta delta Ct)) values are described in: Livak & Schmittgen, (2001) <doi:10.1006/meth.2001.1262>.
Empowers users to fuzzily-merge data frames with millions or tens of millions of rows in minutes with low memory usage. The package uses the locality sensitive hashing algorithms developed by Datar, Immorlica, Indyk and Mirrokni (2004) <doi:10.1145/997817.997857>, and Broder (1998) <doi:10.1109/SEQUEN.1997.666900> to avoid having to compare every pair of records in each dataset, resulting in fuzzy-merges that finish in linear time.
MSstatsPTM provides general statistical methods for quantitative characterization of post-translational modifications (PTMs). Supports DDA, DIA, SRM, and tandem mass tag (TMT) labeling. Typically, the analysis involves the quantification of PTM sites (i.e., modified residues) and their corresponding proteins, as well as the integration of the quantification results. MSstatsPTM provides functions for summarization, estimation of PTM site abundance, and detection of changes in PTMs across experimental conditions.
This package provides a shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs.
The Hashery is a tight collection of Hash-like classes. Included are the auto-sorting Dictionary class, the efficient LRUHash, the flexible OpenHash and the convenient KeyHash. Nearly every class is a subclass of the CRUDHash which defines a CRUD (Create, Read, Update and Delete) model on top of Ruby's standard Hash making it possible to subclass and augment to fit any specific use case.
Wrapper for widely used SUNDIALS software (SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers) and more precisely to its CVODES solver. It is aiming to solve ordinary differential equations (ODE) and optionally pending forward sensitivity problem. The wrapper is made R friendly by allowing to pass custom parameters to user's callback functions. Such functions can be both written in R and in C++ ('RcppArmadillo flavor). In case of C++', performance is greatly improved so this option is highly advisable when performance matters. If provided, Jacobian matrix can be calculated either in dense or sparse format. In the latter case rmumps package is used to solve corresponding linear systems. Root finding and pending event management are optional and can be specified as R or C++ functions too. This makes them a very flexible tool for controlling the ODE system during the time course simulation. SUNDIALS library was published in Hindmarsh et al. (2005) <doi:10.1145/1089014.1089020>.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
Run other estimation and simulation software via the nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>) interface including PKNCA', NONMEM and Monolix'. While not required, you can get/install the lixoftConnectors package in the Monolix installation, as described at the following url <https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization>. When lixoftConnectors is available, Monolix can be run directly instead of setting up command line usage.
An implementation of the bridge distribution with logit-link in R. In Wang and Louis (2003) <DOI:10.1093/biomet/90.4.765>, such a univariate bridge distribution was derived as the distribution of the random intercept that bridged a marginal logistic regression and a conditional logistic regression. The conditional and marginal regression coefficients are a scalar multiple of each other. Such is not the case if the random intercept distribution was Gaussian.
Data recorded as paths or trajectories may be suitably described by curves, which are independent of their parametrization. For the space of such curves, the package provides functionalities for reading curves, sampling points on curves, calculating distance between curves and for computing Tukey curve depth of a curve w.r.t. to a bundle of curves. For details see Lafaye De Micheaux, Mozharovskyi, and Vimond (2021) <doi:10.48550/arXiv.1901.00180>.
Estimates the Dyad Ratios Algorithm for pooling and smoothing poll estimates. The Dyad Ratios Algorithm smooths both forward and backward in time over polling results allowing differences in both question type and polling house. The result is an estimate of a single latent variable that describes the systematic trend over time in the (noisy) polling results. See James A. Stimson (2018) <doi:10.1177/0759106318761614> and the package's vignette for more details.
This package provides functions for the calculation and plotting of synchrony in tree growth from tree-ring width chronologies (TRW index). It combines variance-covariance (VCOV) mixed modelling with functions that quantify the degree to which the TRW chronologies contain a common temporal signal. It also implements temporal trends in spatial synchrony using a moving window. These methods can also be used with other kind of ecological variables that have temporal autocorrelation corrected.
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.
This algorithm provides a numerical solution to the problem of unconstrained local minimization (or maximization). It is particularly suited for complex problems and more efficient than the Gauss-Newton-like algorithm when starting from points very far from the final minimum (or maximum). Each iteration is parallelized and convergence relies on a stringent stopping criterion based on the first and second derivatives. See Philipps et al, 2021 <doi:10.32614/RJ-2021-089>.
Multiple Imputation has been shown to be a flexible method to impute missing values by Van Buuren (2007) <doi:10.1177/0962280206074463>. Expanding on this, random forests have been shown to be an accurate model by Stekhoven and Buhlmann <arXiv:1105.0828> to impute missing values in datasets. They have the added benefits of returning out of bag error and variable importance estimates, as well as being simple to run in parallel.
Calculate ocean wave height summary statistics and process data from bottom-mounted pressure sensor data loggers. Derived primarily from MATLAB functions provided by U. Neumeier at <http://neumeier.perso.ch/matlab/waves.html>. Wave number calculation based on the algorithm in Hunt, J. N. (1979, ISSN:0148-9895) "Direct Solution of Wave Dispersion Equation", American Society of Civil Engineers Journal of the Waterway, Port, Coastal, and Ocean Division, Vol 105, pp 457-459.
Validate data in data frames, tibble objects, Spark DataFrames', and database tables. Validation pipelines can be made using easily-readable, consecutive validation steps. Upon execution of the validation plan, several reporting options are available. User-defined thresholds for failure rates allow for the determination of appropriate reporting actions. Many other workflows are available including an information management workflow, where the aim is to record, collect, and generate useful information on data tables.
Phenotypic analysis of data coming from high throughput phenotyping (HTP) platforms, including different types of outlier detection, spatial analysis, and parameter estimation. The package is being developed within the EPPN2020 project (<https://cordis.europa.eu/project/id/731013>). Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions.
As a successor of the packages BatchJobs and BatchExperiments, this package provides a parallel implementation of the Map function for high performance computing systems managed by various schedulers. A multicore and socket mode allow the parallelization on a local machines, and multiple machines can be hooked up via SSH to create a makeshift cluster. Moreover, the package provides an abstraction mechanism to define large-scale computer experiments in a well-organized and reproducible way.
This package provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including PCA (Principal Component Analysis), CA (Correspondence Analysis), MCA (Multiple Correspondence Analysis), FAMD (Factor Analysis of Mixed Data), MFA (Multiple Factor Analysis) and HMFA (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides ggplot2-based elegant data visualization.
xwayland-run contains a set of small utilities revolving around running Xwayland and various Wayland compositor headless, namely:
xwayland-run: Spawn X11 client within its own dedicatedXwaylandrootful instance.wlheadless-run: Run Wayland client on a set of supported Wayland headless compositors.xwfb-run: Combination of above two tools to be used as a direct replacement forxvfb-runspecifically.