Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download ifo business survey data and more time series from ifo institute <https://www.ifo.de/en/ifo-time-series>.
The Iterative Cumulative Sum of Squares (ICSS) algorithm by Inclan/Tiao (1994) <https://www.jstor.org/stable/2290916> detects multiple change points, i.e. structural break points, in the variance of a sequence of independent observations. For series of moderate size (i.e. 200 observations and beyond), the ICSS algorithm offers results comparable to those obtained by a Bayesian approach or by likelihood ration tests, without the heavy computational burden required by these approaches.
Improve optical character recognition by binarizing images. The package focuses primarily on local adaptive thresholding algorithms. In English, this means that it has the ability to turn a color or gray scale image into a black and white image. This is particularly useful as a preprocessing step for optical character recognition or handwritten text recognition.
This package provides utility functions to deal with Italian fiscal code ('codice fiscale').
Generates efficient designs for discrete choice experiments based on the multinomial logit model, and individually adapted designs for the mixed multinomial logit model. The generated designs can be presented on screen and choice data can be gathered using a shiny application. Traets F, Sanchez G, and Vandebroek M (2020) <doi:10.18637/jss.v096.i03>.
This package provides a set of fast, chainable image-processing operations which are applicable to images of two, three or four dimensions, particularly medical images.
Fit mixed-effects location scale models with spike-and-slab priors on the location random effects to identify units with unusual residual variances. The method is described in detail in Carmo, Williams and Rast (2025) <https://osf.io/sh6ne>.
Infix operators to detect, subset, and replace the elements matched by a given condition. The functions have several variants of operator types, including subsets, ranges, regular expressions and others. Implemented operators work on vectors, matrices, and lists.
This package implements the Interpolate, Truncate, Project (ITP) root-finding algorithm developed by Oliveira and Takahashi (2021) <doi:10.1145/3423597>. The user provides the function, from the real numbers to the real numbers, and an interval with the property that the values of the function at its endpoints have different signs. If the function is continuous over this interval then the ITP method estimates the value at which the function is equal to zero. If the function is discontinuous then a point of discontinuity at which the function changes sign may be found. The function can be supplied using either an R function or an external pointer to a C++ function. Tuning parameters of the ITP algorithm can be set by the user. Default values are set based on arguments in Oliveira and Takahashi (2021).
Calculates various chance-corrected agreement coefficients (CAC) among 2 or more raters are provided. Among the CAC coefficients covered are Cohen's kappa, Conger's kappa, Fleiss kappa, Brennan-Prediger coefficient, Gwet's AC1/AC2 coefficients, and Krippendorff's alpha. Multiple sets of weights are proposed for computing weighted analyses. All of these statistical procedures are described in details in Gwet, K.L. (2014,ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.
This package provides a set of functions to analyse and compare texts, using classical text mining functions, as well as those from theoretical ecology.
This package implements the procedures suggested in Esarey and Sumner (2017) <http://justinesarey.com/interaction-overconfidence.pdf> for controlling the false discovery rate when constructing marginal effects plots for models with interaction terms.
This package provides functions to to compute a continuum of information-based measures for quantifying the temporal stability of populations, communities, and ecosystems, as well as their associated synchrony, based on species (or species assemblage) biomass or other key variables. When biodiversity data are available, the package also enables the assessment of the corresponding diversityâ stability relationships. All measures are applicable in both temporal and spatial contexts. The theoretical and methodological background is detailed in Chao et al. (2025) <doi:10.1101/2025.08.20.671203>.
This package provides a port of Python's excellent itertools module to R for efficient looping.
We provide data sets used in the textbook "Introduction to Sports Analytics using R" by Elmore and Urbaczweski (2025).
Nonparametric estimation on survival analysis under order-restrictions.
As a sequel to iNEXT', the iNEXT.beta3D package provides functions to compute standardized taxonomic, phylogenetic, and functional diversity (3D) estimates with a common sample size (for alpha and gamma diversity) or sample coverage (for alpha, beta, gamma diversity as well as dissimilarity or turnover indices). Hill numbers and their generalizations are used to quantify 3D and to make multiplicative decomposition (gamma = alpha x beta). The package also features size- and coverage-based rarefaction and extrapolation sampling curves to facilitate rigorous comparison of beta diversity across datasets. See Chao et al. (2023) <doi:10.1002/ecm.1588> for more details.
Interfaces for choosing important predictors in supervised regression, classification, and censored regression models. Permuted importance scores (Biecek and Burzykowski (2021) <doi:10.1201/9780429027192>) can be computed for tidymodels model fits.
This package provides an interface to the Instagram API <https://instagram.com/ developer/>, which allows R users to download public pictures filtered by hashtag, popularity, user or location, and to access public users profile data.
Multivariate Expectation-Maximization (EM) based imputation framework that offers several different algorithms. These include regularisation methods like Lasso and Ridge regression, tree-based models and dimensionality reduction methods like PCA and PLS.
Data from the United States Center for Medicare and Medicaid Services (CMS) is included in this package. There are ICD-9 and ICD-10 diagnostic and procedure codes, and lists of the chapter and sub-chapter headings and the ranges of ICD codes they encompass. There are also two sample datasets. These data are used by the icd package for finding comorbidities.
To implement a general framework to quantitatively infer Community Assembly Mechanisms by Phylogenetic-bin-based null model analysis, abbreviated as iCAMP (Ning et al 2020) <doi:10.1038/s41467-020-18560-z>. It can quantitatively assess the relative importance of different community assembly processes, such as selection, dispersal, and drift, for both communities and each phylogenetic group ('bin'). Each bin usually consists of different taxa from a family or an order. The package also provides functions to implement some other published methods, including neutral taxa percentage (Burns et al 2016) <doi:10.1038/ismej.2015.142> based on neutral theory model and quantifying assembly processes based on entire-community null models ('QPEN', Stegen et al 2013) <doi:10.1038/ismej.2013.93>. It also includes some handy functions, particularly for big datasets, such as phylogenetic and taxonomic null model analysis at both community and bin levels, between-taxa niche difference and phylogenetic distance calculation, phylogenetic signal test within phylogenetic groups, midpoint root of big trees, etc. Version 1.3.x mainly improved the function for QPEN and added function icamp.cate() to summarize iCAMP results for different categories of taxa (e.g. core versus rare taxa).
It facilitates the calculation of 40 different insulin sensitivity indices based on fasting, oral glucose tolerance test (OGTT), lipid (adipose), and tracer (palmitate and glycerol rate) and dxa (fat mass) measurement values. It enables easy and accurate assessment of insulin sensitivity, critical for understanding and managing metabolic disorders like diabetes and obesity. Indices calculated are described in Gastaldelli (2022). <doi:10.1002/oby.23503> and Lorenzo (2010). <doi:10.1210/jc.2010-1144>.
This package implements the item based collaborative filtering (IBCF) method for continues phenotypes in the context of plant breeding where data are collected for various traits that were studied in various environments proposed by Montesinos-López et al. (2017) <doi:10.1534/g3.117.300309>.