Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Locally sparse estimator of generalized varying coefficient model for asynchronous longitudinal data by kernel-weighted estimating equation.
The programs were developed for estimation of parameters and testing exponential versus Pareto distribution during our work on hydrologic extremes. See Kozubowski, T.J., A.K. Panorska, F. Qeadan, and A. Gershunov (2007) <doi:10.1080/03610910802439121>, and Panorska, A.K., A. Gershunov, and T.J. Kozubowski (2007) <doi:10.1007/978-0-387-34918-3_26>.
Density, distribution, quantile and random generation function for the logitnormal distribution. Estimation of the mode and the first two moments. Estimation of distribution parameters.
Detect feedback loops (cycles, circuits) between species (nodes) in ordinary differential equation (ODE) models. Feedback loops are paths from a node to itself without visiting any other node twice, and they have important regulatory functions. Loops are reported with their order of participating nodes and their length, and whether the loop is a positive or a negative feedback loop. An upper limit of the number of feedback loops limits runtime (which scales with feedback loop count). Model parametrizations and values of the modelled variables are accounted for. Computation uses the characteristics of the Jacobian matrix as described e.g. in Thomas and Kaufman (2002) <doi:10.1016/s1631-0691(02)01452-x>. Input can be the Jacobian matrix of the ODE model or the ODE function definition; in the latter case, the Jacobian matrix is determined using numDeriv'. Graph-based algorithms from igraph are employed for path detection.
Implementation of Low Walsh Figure of Merit (WAFOM) sequence based on Niederreiter-Xing sequence <DOI:10.1007/978-3-642-56046-0_30>.
L-systems or Lindenmayer systems are parallel rewriting systems which can be used to simulate biological forms and certain kinds of fractals. Briefly, in an L-system a series of symbols in a string are replaced iteratively according to rules to give a more complex string. Eventually, the symbols are translated into turtle graphics for plotting. Wikipedia has a very good introduction: en.wikipedia.org/wiki/L-system This package provides basic functions for exploring L-systems.
Curated datasets from US Long Term Ecological Research sites.
Local partial likelihood estimation by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the bootstrap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).
Lipid annotation in untargeted LC-MS lipidomics based on fragmentation rules. Alcoriza-Balaguer MI, Garcia-Canaveras JC, Lopez A, Conde I, Juan O, Carretero J, Lahoz A (2019) <doi:10.1021/acs.analchem.8b03409>.
Introduces in-sample, out-of-sample, pseudo out-of-sample, and benchmark model forecast tests and a new class for working with forecast data, Forecast.
This package provides a collection of hypothesis tests and confidence intervals based on the likelihood ratio <https://en.wikipedia.org/wiki/Likelihood-ratio_test>.
This package provides functions for different purposes related to forest biometrics, including illustrative graphics, numerical computation, modeling height-diameter relationships, prediction of tree volumes, modelling of diameter distributions and estimation off stand density using ITD. Several empirical datasets are also included.
An extendable toolkit for interactive data visualization and exploration.
Evaluates whether the relationship between two vectors is linear or nonlinear. Performs a test to determine how well a linear model fits the data compared to higher order polynomial models. Jhang et al. (2004) <doi:10.1043/1543-2165(2004)128%3C44:EOLITC%3E2.0.CO;2>.
Supervised classification methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in PK Josephine et. al., (2021) <doi:10.59176/kjcs.v1i1.1259>; and datasets to test them on, which highlight the strengths and weaknesses of each technique.
Trend filtering is a widely used nonparametric method for knot detection. This package provides an efficient solution for L0 trend filtering, avoiding the traditional methods of using Lagrange duality or Alternating Direction Method of Multipliers algorithms. It employ a splicing approach that minimizes L0-regularized sparse approximation by transforming the L0 trend filtering problem. The package excels in both efficiency and accuracy of trend estimation and changepoint detection in segmented functions. References: Wen et al. (2020) <doi:10.18637/jss.v094.i04>; Zhu et al. (2020)<doi:10.1073/pnas.2014241117>; Wen et al. (2023) <doi:10.1287/ijoc.2021.0313>.
"Learning with Subset Stacking" is a supervised learning algorithm that is based on training many local estimators on subsets of a given dataset, and then passing their predictions to a global estimator. You can find the details about LESS in our manuscript at <arXiv:2112.06251>.
Collect marketing data from LinkedIn Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Embarrassingly Parallel Linear Mixed Model calculations spread across local cores which repeat until convergence.
Read and write access to PNG image files using the LodePNG library. The package has no external dependencies.
This package provides a ggplot2 extension that focusses on expanding the plotter's arsenal of guides. Guides in ggplot2 include axes and legends. legendry offers new axes and annotation options, as well as new legends and colour displays.
The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Performs active and passive transforms and has the ability to use units in which the speed of light is not unity. Includes some experimental functionality for celerity and rapidity. For general relativity, see the schwarzschild package.
Without imposing stringent distributional assumptions or shape restrictions, nonparametric estimation has been popular in economics and other social sciences for counterfactual analysis, program evaluation, and policy recommendations. This package implements a novel density (and derivatives) estimator based on local polynomial regressions, documented in Cattaneo, Jansson and Ma (2022) <doi:10.18637/jss.v101.i02>: lpdensity() to construct local polynomial based density (and derivatives) estimator, and lpbwdensity() to perform data-driven bandwidth selection.
R lists, especially nested lists, can be very difficult to visualize or represent. Sometimes str() is not enough, so this suite of htmlwidgets is designed to help see, understand, and maybe even modify your R lists. The function reactjson() requires a package reactR that can be installed from CRAN or <https://github.com/timelyportfolio/reactR>.