The package provides ready to use epigenomes (obtained from TWGBS) and transcriptomes (RNA-seq) from various tissues as obtained in the study (Delacher and Imbusch 2017, PMID: 28783152). Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. The underlying dataset characterises the epigenetic and transcriptomic modifications for specialized tissue Treg cells.
This package provides a shiny application to assess statistical assumptions and guide users toward appropriate tests. The app is designed for researchers with minimal statistical training and provides diagnostics, plots, and test recommendations for a wide range of analyses. Many statistical assumptions are implemented using the package rstatix (Kassambara, 2019) <doi:10.32614/CRAN.package.rstatix> and performance (Lüdecke et al., 2021) <doi:10.21105/joss.03139>.
This package contains functions for testing for significant differences between multiple coefficients of variation. Includes Feltz and Miller's (1996) <DOI:10.1002/(SICI)1097-0258(19960330)15:6%3C647::AID-SIM184%3E3.0.CO;2-P> asymptotic test and Krishnamoorthy and Lee's (2014) <DOI:10.1007/s00180-013-0445-2> modified signed-likelihood ratio test. See the vignette for more, including full details of citations.
This package provides functions to download, process, and visualize German geospatial data across administrative levels, including states, districts, and municipalities. Supports interactive tables and customized maps using built-in or external datasets. Official shapefiles are accessed from the German Federal Agency for Cartography and Geodesy (BKG) <https://gdz.bkg.bund.de/>, licensed under dl-de/by-2-0 <https://www.govdata.de/dl-de/by-2-0>.
This package provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an urca Unit Root Test Interface for Pfaff's unit root test suite.
This package contains a set of tools for constructing and coercing into and from the "mdate" class. This date class implements ISO 8601-2:2019(E) and allows regular dates to be annotated to express unspecified date components, approximate or uncertain date components, date ranges, and sets of dates. This is useful for describing and analysing temporal information, whether historical or recent, where date precision may vary.
This package provides functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the Natural and Life Sciences". This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions, several real data sets and six vignettes covering a range different applications.
Matching with string distance has never been easier! messy.cats contains various functions that employ string distance tools in order to make data management easier for users working with categorical data. Categorical data, especially user inputted categorical data that often tends to be plagued by typos, can be difficult to work with. messy.cats aims to provide functions that make cleaning categorical data simple and easy.
An implementation of the ternary plot for interpreting regression coefficients of trinomial regression models, as proposed in Santi, Dickson and Espa (2019) <doi:10.1080/00031305.2018.1442368>. Ternary plots can be drawn using either ggtern package (based on ggplot2') or Ternary package (based on standard graphics). The package and its features are illustrated in Santi, Dickson, Espa and Giuliani (2022) <doi:10.18637/jss.v103.c01>.
Scale alignment is a new procedure for rescaling dimensions of between-items multidimensional Rasch family models so that dimensions scores can be compared directly (Feuerstahler & Wilson, 2019; under review) <doi:10.1111/jedm.12209>. This package includes functions for implementing delta-dimensional alignment (DDA) and logistic regression alignment (LRA) for dichotomous or polytomous data. This function also includes a wrapper for models fit using the TAM package.
Flexibly simulates a dataset with time-varying covariates with user-specified exchangeable correlation structures across and within clusters. Covariates can be normal or binary and can be static within a cluster or time-varying. Time-varying normal variables can optionally have linear trajectories within each cluster. See ?make_one_dataset for the main wrapper function. See Montez-Rath et al. <arXiv:1709.10074> for methodological details.
Transform complex statistical output into straightforward, understandable, and context-aware natural language descriptions using Large Language Models (LLMs), making complex analyses more accessible to individuals with varying statistical expertise. It relies on the ellmer package to interface with LLM providers including OpenAI <https://openai.com/>, Google AI Studio <https://aistudio.google.com/>, and Anthropic <https://www.anthropic.com/> (API keys are required and managed via ellmer').
This package implements triple-difference (DDD) estimators for both average treatment effects and event-study parameters. Methods include regression adjustment, inverse-probability weighting, and doubly-robust estimators, all of which rely on a conditional DDD parallel-trends assumption and allow covariate adjustment across multiple pre- and post-treatment periods. The methodology is detailed in Ortiz-Villavicencio and Sant'Anna (2025) <doi:10.48550/arXiv.2505.09942>.
This package provides a set of functions for manipulating data frames in accordance with specific business rules. In addition, it includes wrapper functions for commonly used functions from the popular tidyverse package, making it easy to integrate these functions into data analysis workflows. The package is designed to streamline data preprocessing and help users quickly and efficiently perform data transformations that are specific to their business needs.
Grammatical evolution (see O'Neil, M. and Ryan, C. (2003,ISBN:1-4020-7444-1)) uses decoders to convert linear (binary or integer genes) into programs. In addition, automatic determination of codon precision with a limited rule choice bias is provided. For a recent survey of grammatical evolution, see Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>.
The fit.models function and its associated methods (coefficients, print, summary, plot, etc.) were originally provided in the robust package to compare robustly and classically fitted model objects. The aim of the fit.models package is to separate this fitted model object comparison functionality from the robust package and to extend it to support fitting methods (e.g., classical, robust, Bayesian, regularized, etc.) more generally.
This R package supports interactive visualization of multi-channel images and segmentation masks generated by imaging mass cytometry and other highly multiplexed imaging techniques using shiny. The cytoviewer interface is divided into image-level (Composite and Channels) and cell-level visualization (Masks). It allows users to overlay individual images with segmentation masks, integrates well with SingleCellExperiment and SpatialExperiment objects for metadata visualization and supports image downloads.
The ddPCRclust algorithm can automatically quantify the CPDs of non-orthogonal ddPCR reactions with up to four targets. In order to determine the correct droplet count for each target, it is crucial to both identify all clusters and label them correctly based on their position. For more information on what data can be analyzed and how a template needs to be formatted, please check the vignette.
Epialleles are specific DNA methylation patterns that are mitotically and/or meiotically inherited. This package calls and reports cytosine methylation as well as frequencies of hypermethylated epialleles at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. Among other things, this package can also extract and visualise methylation patterns and assess allele specificity of methylation.
Estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent response and covariates are mismatched and observed intermittently within subjects. Kernel weighted estimating equations are used for generalized linear models with either time-invariant or time-dependent coefficients. Cao, H., Li, J., and Fine, J. P. (2016) <doi:10.1214/16-EJS1141>. Cao, H., Zeng, D., and Fine, J. P. (2015) <doi:10.1111/rssb.12086>.
This package provides an R interface to the CVD Prevent application programming interface (API), allowing users to retrieve and analyse cardiovascular disease prevention data from primary care records across England. The Cardiovascular Disease Prevention Audit (CVDPREVENT) automatically extracts routinely held GP health data to support national reporting and improvement initiatives. See the API documentation for details: <https://bmchealthdocs.atlassian.net/wiki/spaces/CP/pages/317882369/CVDPREVENT+API+Documentation>.
This package performs Bayesian non-parametric calibration of multiple related radiocarbon determinations, and summarises the calendar age information to plot their joint calendar age density (see Heaton (2022) <doi:10.1111/rssc.12599>). Also models the occurrence of radiocarbon samples as a variable-rate (inhomogeneous) Poisson process, plotting the posterior estimate for the occurrence rate of the samples over calendar time, and providing information about potential change points.
Calculate p-values and confidence intervals using cluster-adjusted t-statistics (based on Ibragimov and Muller (2010) <DOI:10.1198/jbes.2009.08046>, pairs cluster bootstrapped t-statistics, and wild cluster bootstrapped t-statistics (the latter two techniques based on Cameron, Gelbach, and Miller (2008) <DOI:10.1162/rest.90.3.414>. Procedures are included for use with GLM, ivreg, plm (pooling or fixed effects), and mlogit models.
Simulate general insurance policies, losses and loss emergence. The functions contemplate deterministic and stochastic policy retention and growth scenarios. Retention and growth rates are percentages relative to the expiring portfolio. Claims are simulated for each policy. This is accomplished either be assuming a frequency distribution per development lag or by generating random wait times until claim emergence and settlement. Loss simulation uses standard loss distributions for claim amounts.