Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
Various opportunities to evaluate the effects of including one or more control variable(s) in structural equation models onto model-implied variances, covariances, and parameter estimates. The derivation of the methodology employed in this package can be obtained from Blötner (2023) <doi:10.31234/osf.io/dy79z>.
This package implements a Gibbs sampler to do linear regression with multiple covariates, multiple responses, Gaussian measurement errors on covariates and responses, Gaussian intrinsic scatter, and a covariate prior distribution which is given by either a Gaussian mixture of specified size or a Dirichlet process with a Gaussian base distribution. Described further in Mantz (2016) <DOI:10.1093/mnras/stv3008>.
An implementation of a method of extending a logistic regression model beyond linear effects of the co-variates. The extension in is constructed by first equating the logistic regression model to a naive Bayes model where all the margins are specified to follow natural exponential distributions conditional on Y, that is, a model for Y given X that is specified through the distribution of X given Y, where the columns of X are assumed to be mutually independent conditional on Y. Subsequently, the model is expanded by adding vine - copulas to relax the assumption of mutual independence, where pair-copulas are added in a stage-wise, forward selection manner. Some heuristics are employed during the process of selecting edges, as well as the families of pair-copula models. After each component is added, the parameters are updated by a (smaller) number of gradient steps to maximise the likelihood. When the algorithm has stopped adding edges, based the criterion that a new edge should improve the likelihood more than k times the number new parameters, the parameters are updated with a larger number of gradient steps, or until convergence.
This package provides a shiny application to automate forward and back survey translation with optional reconciliation using large language models (LLMs). Supports OpenAI (GPT), Google Gemini, and Anthropic Claude models. It follows the TRAPD (Translation, Review, Adjudication, Pretesting, Documentation) framework and ISPOR (International Society for Pharmacoeconomics and Outcomes Research) recommendations. See Harkness et al. (2010) <doi:10.1002/9780470609927.ch7> and Wild et al. (2005) <doi:10.1111/j.1524-4733.2005.04054.x>.
This package provides functions that compute the lattice-based density and regression estimators for two-dimensional regions with irregular boundaries and holes. The density estimation technique is described in Barry and McIntyre (2011) <doi:10.1016/j.ecolmodel.2011.02.016>, while the non-parametric regression technique is described in McIntyre and Barry (2018) <doi:10.1080/10618600.2017.1375935>.
Letter Values for the course Exploratory Data Analysis at Federal University of Bahia (Brazil). The approach implemented in the package is presented in the textbook of Tukey (1977) <ISBN: 978-0201076165>.
Set of tools for analyzing lactate thresholds from a step incremental test to exhaustion. Easily analyze the methods Log-log, Onset of Blood Lactate Accumulation (OBLA), Baseline plus (Bsln+), Dmax, Lactate Turning Point (LTP), and Lactate / Intensity ratio (LTratio) in cycling, running, or swimming. Beaver WL, Wasserman K, Whipp BJ (1985) <doi:10.1152/jappl.1985.59.6.1936>. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) <doi:10.1055/s-2008-1025824>. Kindermann W, Simon G, Keul J (1979) <doi:10.1007/BF00421101>. Skinner JS, Mclellan TH (1980) <doi:10.1080/02701367.1980.10609285>. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) PMID 2408033. Zoladz JA, Rademaker AC, Sargeant AJ (1995) <doi:10.1113/jphysiol.1995.sp020959>. Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M (1992) <doi:10.1055/s-2007-1021309>. Bishop D, Jenkins DG, Mackinnon LT (1998) <doi:10.1097/00005768-199808000-00014>. Hughson RL, Weisiger KH, Swanson GD (1987) <doi:10.1152/jappl.1987.62.5.1975>. Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) <doi:10.1371/journal.pone.0199794>. Hofmann P, Tschakert G (2017) <doi:10.3389/fphys.2017.00337>. Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) <doi:10.1097/00005768-199706000-00005>. Pokan R, Hofmann P, Von Duvillard SP, et al. (1997) <doi:10.1097/00005768-199708000-00009>. Dickhuth H-H, Yin L, Niess A, et al. (1999) <doi:10.1055/s-2007-971105>.
Create custom labels, badges, certificates and other documents. Automate the production of potentially large numbers of herbarium and collection labels, accreditation badges, attendance and participation certificates, etc, and deliver them automatically. Documents are generated in PDF format, which requires a working installation of LaTeX', such as TinyTeX'.
Estimation of life expectancy and Life Years Lost (LYL, or lillies for short) for a given population, for example those with a given disease or condition. In addition, the package can be used to compare estimates from different populations, or to estimate confidence intervals. Technical details of the method are available in Plana-Ripoll et al. (2020) <doi:10.1371/journal.pone.0228073> and Andersen (2017) <doi:10.1002/sim.7357>.
It uses phenological and productivity-related variables derived from time series of vegetation indexes, such as the Normalized Difference Vegetation Index, to assess ecosystem dynamics and change, which eventually might drive to land degradation. The final result of the Land Productivity Dynamics indicator is a categorical map with 5 classes of land productivity dynamics, ranging from declining to increasing productivity. See www.sciencedirect.com/science/article/pii/S1470160X21010517/ for a description of the methods used in the package to calculate the indicator.
This package provides methods for the interpolation of large spatial datasets. This package uses a basis function approach that provides a surface fitting method that can approximate standard spatial data models. Using a large number of basis functions allows for estimates that can come close to interpolating the observations (a spatial model with a small nugget variance.) Moreover, the covariance model for this method can approximate the Matern covariance family but also allows for a multi-resolution model and supports efficient computation of the profile likelihood for estimating covariance parameters. This is accomplished through compactly supported basis functions and a Markov random field model for the basis coefficients. These features lead to sparse matrices for the computations and this package makes of the R spam package for sparse linear algebra. An extension of this version over previous ones ( < 5.4 ) is the support for different geometries besides a rectangular domain. The Markov random field approach combined with a basis function representation makes the implementation of different geometries simple where only a few specific R functions need to be added with most of the computation and evaluation done by generic routines that have been tuned to be efficient. One benefit of this package's model/approach is the facility to do unconditional and conditional simulation of the field for large numbers of arbitrary points. There is also the flexibility for estimating non-stationary covariances and also the case when the observations are a linear combination (e.g. an integral) of the spatial process. Included are generic methods for prediction, standard errors for prediction, plotting of the estimated surface and conditional and unconditional simulation. See the LatticeKrigRPackage GitHub repository for a vignette of this package. Development of this package was supported in part by the National Science Foundation Grant 1417857 and the National Center for Atmospheric Research.
This package contains functions for a flexible varying-coefficient landmark model by incorporating multiple short-term events into the prediction of long-term survival probability. For more information about landmark prediction please see Li, W., Ning, J., Zhang, J., Li, Z., Savitz, S.I., Tahanan, A., Rahbar.M.H., (2023+). "Enhancing Long-term Survival Prediction with Multiple Short-term Events: Landmarking with A Flexible Varying Coefficient Model".
Interact with LaminDB'. LaminDB is an open-source data framework for biology. This package allows you to query and download data from LaminDB instances.
This package provides functions for regional frequency analysis using the methods of J. R. M. Hosking and J. R. Wallis (1997), "Regional frequency analysis: an approach based on L-moments".
Import, processing, validation, and visualization of personal light exposure measurement data from wearable devices. The package implements features such as the import of data and metadata files, conversion of common file formats, validation of light logging data, verification of crucial metadata, calculation of common parameters, and semi-automated analysis and visualization.
Density, distribution function, quantile function and random generation for the L-Logistic distribution with parameters m and phi. The parameter m is the median of the distribution.
Create small multiples of several leaflet web maps with (optional) synchronised panning and zooming control. When syncing is enabled all maps respond to mouse actions on one map. This allows side-by-side comparisons of different attributes of the same geometries. Syncing can be adjusted so that any combination of maps can be synchronised.
An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.
An implementation of estimating the Latent Unknown Clusters By Integrating Multi-omics Data (LUCID) model (Peng (2019) <doi:10.1093/bioinformatics/btz667>). LUCID conducts integrated clustering using exposures, omics information (and outcome information as an option). This package implements three different integration strategies for multi-omics data analysis within the LUCID framework: LUCID early integration (the original LUCID model), LUCID in parallel (intermediate integration), and LUCID in serial (late integration). Automated model selection for each LUCID model is available to obtain the optimal number of latent clusters, and an integrated imputation approach is implemented to handle sporadic and list-wise missingness in multi-omics data. Lasso-type regularity for exposure and omics features were added. S3 methods for summary and plotting functions were fixed. Fixed minor bugs.
Logic Forest is an ensemble machine learning method that identifies important and interpretable combinations of binary predictors using logic regression trees to model complex relationships with an outcome. Wolf, B.J., Slate, E.H., Hill, E.G. (2010) <doi:10.1093/bioinformatics/btq354>.
Genome-wide association (GWAS) analyses of a biomarker that account for the limit of detection.
Simulate lobster catch process in a trap fishery. Factors such as lobster density on ocean floor, their movement, trap saturation and bait shrinkage rate can be modeled. Details of the methods for modeling those processes can be found in: Addison and Bell (1997) <doi:10.1071/MF97169>.
Various plots and functions that make use of the lattice/trellis plotting framework. The plots, which include loaPlot(), loaMapPlot() and trianglePlot(), and use panelPal(), a function that extends lattice and hexbin package methods to automate plot subscript and panel-to-panel and panel-to-key synchronization/management.