Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Performing impulse-response function (IRF) analysis of relevant variables of agent-based simulation models, in particular for models described in LSD format. Based on the data produced by the simulation model, it performs both linear and state-dependent IRF analysis, providing the tools required by the Counterfactual Monte Carlo (CMC) methodology (Amendola and Pereira (2024) <doi:10.2139/ssrn.4740360>), including state identification and sensitivity. CMC proposes retrieving the causal effect of shocks by exploiting the opportunity to directly observe the counterfactual in a fully controlled experimental setup. LSD (Laboratory for Simulation Development) is free software available at <https://www.labsimdev.org/>).
Automated analysis and modeling of longitudinal omics data (e.g. breath metabolomics') using generalized spline mixed effect models. Including automated filtering of noise parameters and determination of breakpoints.
This package provides a joint latent class model where a hierarchical structure exists, with an interaction between female and male partners of a couple. A Bayesian perspective to inference and Markov chain Monte Carlo algorithms to obtain posterior estimates of model parameters. The reference paper is: Beom Seuk Hwang, Zhen Chen, Germaine M.Buck Louis, Paul S. Albert, (2018) "A Bayesian multi-dimensional couple-based latent risk model with an application to infertility". Biometrics, 75, 315-325. <doi:10.1111/biom.12972>.
This package performs Bayesian linear regression and forecasting in astronomy. The method accounts for heteroscedastic errors in both the independent and the dependent variables, intrinsic scatters (in both variables) and scatter correlation, time evolution of slopes, normalization, scatters, Malmquist and Eddington bias, upper limits and break of linearity. The posterior distribution of the regression parameters is sampled with a Gibbs method exploiting the JAGS library.
This package provides S3 classes to represent low rank matrix decompositions.
Computes the probability density function, the cumulative distribution function, the hazard rate function, the quantile function and random generation for Lindley Power Series distributions, see Nadarajah and Si (2018) <doi:10.1007/s13171-018-0150-x>.
An interface to LuaJIT <https://luajit.org>, a just-in-time compiler for the Lua scripting language <https://www.lua.org>. Allows users to run Lua code from R'.
Estimating causal parameters in the presence of treatment spillover is of great interest in statistics. This package provides tools for instrumental variables estimation of average causal effects under network interference of unknown form. The target parameters are the local average direct effect, the local average indirect effect, the local average overall effect, and the local average spillover effect. The methods are developed by Hoshino and Yanagi (2023) <doi:10.48550/arXiv.2108.07455>.
Consider linear regression model Y = Xb + error where the distribution function of errors is unknown, but errors are independent and symmetrically distributed. The package contains a function named LRMDE which takes Y and X as input and returns minimum distance estimator of parameter b in the model.
Reproduces the harmonized DB of the ESTAT survey of the same name. The survey data is served as separate spreadsheets with noticeable differences in the collected attributes. The tool here presented carries out a series of instructions that harmonize the attributes in terms of name, meaning, and occurrence, while also introducing a series of new variables, instrumental to adding value to the product. Outputs include one harmonized table with all the years, and three separate geometries, corresponding to the theoretical point, the gps location where the measurement was made and the 250m east-facing transect.
An implementation of list comprehensions as purely syntactic sugar with a minor runtime overhead. It constructs nested for-loops and executes the byte-compiled loops to collect the results.
This package provides tools to decompose differences in cohort health expectancy (HE) by age and cause using longitudinal data. The package implements a novel longitudinal attribution method based on a semiparametric additive hazards model with time-dependent covariates, specifically designed to address interval censoring and semi-competing risks via a copula framework. The resulting age-cause-specific contributions to disability prevalence and death probability can be used to quantify and decompose differences in cohort HE between groups. The package supports stepwise replacement decomposition algorithms and is applicable to cohort-based health disparity research across diverse populations. Related methods include Sun et al. (2023) <doi:10.1177/09622802221133552>.
L1 estimation for linear regression using Barrodale and Roberts method <doi:10.1145/355616.361024> and the EM algorithm <doi:10.1023/A:1020759012226>. Estimation of mean and covariance matrix using the multivariate Laplace distribution, density, distribution function, quantile function and random number generation for univariate and multivariate Laplace distribution <doi:10.1080/03610929808832115>. Implementation of Naik and Plungpongpun <doi:10.1007/0-8176-4487-3_7> for the Generalized spatial median estimator is included.
Estimation of Latent Order Logistic (LOLOG) Models for Networks. LOLOGs are a flexible and fully general class of statistical graph models. This package provides functions for performing MOM, GMM and variational inference. Visual diagnostics and goodness of fit metrics are provided. See Fellows (2018) <doi:10.48550/arXiv.1804.04583> for a detailed description of the methods.
Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>.
Allows researchers to conduct multivariate statistical analyses of survey data with list experiments. This survey methodology is also known as the item count technique or the unmatched count technique and is an alternative to the commonly used randomized response method. The package implements the methods developed by Imai (2011) <doi:10.1198/jasa.2011.ap10415>, Blair and Imai (2012) <doi:10.1093/pan/mpr048>, Blair, Imai, and Lyall (2013) <doi:10.1111/ajps.12086>, Imai, Park, and Greene (2014) <doi:10.1093/pan/mpu017>, Aronow, Coppock, Crawford, and Green (2015) <doi:10.1093/jssam/smu023>, Chou, Imai, and Rosenfeld (2017) <doi:10.1177/0049124117729711>, and Blair, Chou, and Imai (2018) <https://imai.fas.harvard.edu/research/files/listerror.pdf>. This includes a Bayesian MCMC implementation of regression for the standard and multiple sensitive item list experiment designs and a random effects setup, a Bayesian MCMC hierarchical regression model with up to three hierarchical groups, the combined list experiment and endorsement experiment regression model, a joint model of the list experiment that enables the analysis of the list experiment as a predictor in outcome regression models, a method for combining list experiments with direct questions, and methods for diagnosing and adjusting for response error. In addition, the package implements the statistical test that is designed to detect certain failures of list experiments, and a placebo test for the list experiment using data from direct questions.
Utilities for querying plain text accounting files from Ledger', HLedger', and Beancount'.
This package contains functions to help create log files. The package aims to overcome the difficulty of the base R sink() command. The log_print() function will print to both the console and the file log, without interfering in other write operations.
Computation of linkage disequilibrium of ancestry (LDA) and linkage disequilibrium of ancestry score (LDAS). LDA calculates the pairwise linkage disequilibrium of ancestry between single nucleotide polymorphisms (SNPs). LDAS calculates the LDA score of SNPs. The methods are described in Barrie W, Yang Y, Irving-Pease E.K, et al (2024) <doi:10.1038/s41586-023-06618-z>.
This package produces Labour Market Areas from commuting flows available at elementary territorial units. It provides tools for automatic tuning based on spatial contiguity. It also allows for statistical analyses and visualisation of the new functional geography.
Fast and accurate inference of gene-environment associations (GEA) in genome-wide studies (Caye et al., 2019, <doi:10.1093/molbev/msz008>). We developed a least-squares estimation approach for confounder and effect sizes estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several times faster than the existing GEA approaches, then our previous version of the LFMM program present in the LEA package (Frichot and Francois, 2015, <doi:10.1111/2041-210X.12382>).
Solves quadratic programming problems where the Hessian is represented as the product of two matrices. Thanks to Greg Hunt for helping getting this version back on CRAN. The methods in this package are described in: Ormerod, Wand and Koch (2008) "Penalised spline support vector classifiers: computational issues" <doi:10.1007/s00180-007-0102-8>.
This package provides functions for computing the r and r* statistics for inference on an arbitrary scalar function of model parameters, plus some code for the (modified) profile likelihood.
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.