This package provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including PCA
(Principal Component Analysis), CA
(Correspondence Analysis), MCA
(Multiple Correspondence Analysis), FAMD
(Factor Analysis of Mixed Data), MFA
(Multiple Factor Analysis) and HMFA
(Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides ggplot2-based elegant data visualization.
xwayland-run
contains a set of small utilities revolving around running Xwayland
and various Wayland compositor headless, namely:
xwayland-run
: Spawn X11 client within its own dedicatedXwayland
rootful instance.wlheadless-run
: Run Wayland client on a set of supported Wayland headless compositors.xwfb-run
: Combination of above two tools to be used as a direct replacement forxvfb-run
specifically.
This package provides tools to create, validate, and export BioCompute
Objects described in King et al. (2019) <doi:10.17605/osf.io/h59uh>. Users can encode information in data frames, and compose BioCompute
Objects from the domains defined by the standard. A checksum validator and a JSON schema validator are provided. This package also supports exporting BioCompute
Objects as JSON, PDF, HTML, or Word documents, and exporting to cloud-based platforms.
Represents generalized geometric ellipsoids with the "(U,D)" representation. It allows degenerate and/or unbounded ellipsoids, together with methods for linear and duality transformations, and for plotting. Thus ellipsoids are naturally extended to include lines, hyperplanes, points, cylinders, etc. This permits exploration of a variety to statistical issues that can be visualized using ellipsoids as discussed by Friendly, Fox & Monette (2013), Elliptical Insights: Understanding Statistical Methods Through Elliptical Geometry <doi:10.1214/12-STS402>.
Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
Keras Tuner <https://keras-team.github.io/keras-tuner/> is a hypertuning framework made for humans. It aims at making the life of AI practitioners, hypertuner algorithm creators and model designers as simple as possible by providing them with a clean and easy to use API for hypertuning. Keras Tuner makes moving from a base model to a hypertuned one quick and easy by only requiring you to change a few lines of code.
Integration of the units and errors packages for a complete quantity calculus system for R vectors, matrices and arrays, with automatic propagation, conversion, derivation and simplification of magnitudes and uncertainties. Documentation about units and errors is provided in the papers by Pebesma, Mailund & Hiebert (2016, <doi:10.32614/RJ-2016-061>) and by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in those packages as vignettes; see citation("quantities") for details.
The goal of siteymlgen is to make it easy to organise the building of your R Markdown website. The init()
function placed within the first code chunk of the index.Rmd file of an R project directory will initiate the generation of an automatically written _site.yml file. siteymlgen recommends a specific naming convention for your R Markdown files. This naming will ensure that your navbar layout is ordered according to a hierarchy.
Given independent and identically distributed observations X(1), ..., X(n) from a Generalized Pareto distribution with shape parameter gamma in [-1,0], offers several estimates to compute estimates of gamma. The estimates are based on the principle of replacing the order statistics by quantiles of a distribution function based on a log--concave density function. This procedure is justified by the fact that the GPD density is log--concave for gamma in [-1,0].
The goal of surveynnet is to extend the functionality of nnet', which already supports survey weights, by enabling it to handle clustered and stratified data. It achieves this by incorporating design effects through the use of effective sample sizes as outlined by Chen and Rust (2017), <doi:10.1093/jssam/smw036>, and performed by deffCR
in the package PracTools
(Valliant, Dever, and Kreuter (2018), <doi:10.1007/978-3-319-93632-1>).
This package provides functions to calculate exact critical values, statistical power, expected time to signal, and required sample sizes for performing exact sequential analysis. All these calculations can be done for either Poisson or binomial data, for continuous or group sequential analyses, and for different types of rejection boundaries. In case of group sequential analyses, the group sizes do not have to be specified in advance and the alpha spending can be arbitrarily settled.
R data pipelines commonly require reading and writing data to versioned directories. Each directory might correspond to one step of a multi-step process, where that version corresponds to particular settings for that step and a chain of previous steps that each have their own versions. This package creates a configuration object that makes it easy to read and write versioned data, based on YAML configuration files loaded and saved to each versioned folder.
Basic4Cseq is an R package for basic filtering, analysis and subsequent visualization of 4C-seq data. Virtual fragment libraries can be created for any BSGenome package, and filter functions for both reads and fragments and basic quality controls are included. Fragment data in the vicinity of the experiment's viewpoint can be visualized as a coverage plot based on a running median approach and a multi-scale contact profile.
This package provides a complete analysis pipeline for matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) and other two-dimensional mass spectrometry data. In addition to commonly used plotting and processing methods it includes distinctive features, namely baseline subtraction methods such as morphological filters (TopHat) or the statistics-sensitive non-linear iterative peak-clipping algorithm (SNIP), peak alignment using warping functions, handling of replicated measurements as well as allowing spectra with different resolutions.
This package provides a system for extracting news from Chilean media, specifically through Web Scapping from Chilean media. The package allows for news searches using search phrases and date filters, and returns the results in a structured format, ready for analysis. Additionally, it includes functions to clean the extracted data, visualize it, and store it in databases. All of this can be done automatically, facilitating the collection and analysis of relevant information from Chilean media.
Data package for dartR
'. Provides data sets to run examples in dartR
'. This was necessary due to the size limit imposed by CRAN'. The data in dartR.data
is needed to run the examples provided in the dartR
functions. All available data sets are either based on actual data (but reduced in size) and/or simulated data sets to allow the fast execution of examples and demonstration of the functions.
Fits generalized linear models (GLMs) when there is missing data in both the response and categorical covariates. The functions implement likelihood-based methods using the Expectation and Maximization (EM) algorithm and optionally apply Firthâ s bias correction for improved inference. See Pradhan, Nychka, and Bandyopadhyay (2025) <https:>, Maiti and Pradhan (2009) <doi:10.1111/j.1541-0420.2008.01186.x>, Maity, Pradhan, and Das (2019) <doi:10.1080/00031305.2017.1407359> for further methodological details.
Functionalities for calculating the local score and calculating statistical relevance (p-value) to find a local Score in a sequence of given distribution (S. Mercier and J.-J. Daudin (2001) <https://hal.science/hal-00714174/>) ; S. Karlin and S. Altschul (1990) <https://pmc.ncbi.nlm.nih.gov/articles/PMC53667/> ; S. Mercier, D. Cellier and F. Charlot (2003) <https://hal.science/hal-00937529v1/> ; A. Lagnoux, S. Mercier and P. Valois (2017) <doi:10.1093/bioinformatics/btw699> ).
Statistical methods for whole-trial and time-domain analysis of single cell neural response to multiple stimuli presented simultaneously. The package is based on the paper by C Glynn, ST Tokdar, A Zaman, VC Caruso, JT Mohl, SM Willett, and JM Groh (2021) "Analyzing second order stochasticity of neural spiking under stimuli-bundle exposure", is in press for publication by the Annals of Applied Statistics. A preprint may be found at <arXiv:1911.04387>
.
Design and analyze two-stage randomized trials with a continuous outcome measure. The package contains functions to compute the required sample size needed to detect a given preference, treatment, and selection effect; alternatively, the package contains functions that can report the study power given a fixed sample size. Finally, analysis functions are provided to test each effect using either summary data (i.e. means, variances) or raw study data <doi:10.18637/jss.v094.c02>.
Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.
This package provides functions for performing set-theoretic multi-method research, QCA for clustered data, theory evaluation, Enhanced Standard Analysis, indirect calibration, radar visualisations. Additionally it includes data to replicate the examples in the books by Oana, I.E, C. Q. Schneider, and E. Thomann. Qualitative Comparative Analysis (QCA) using R: A Beginner's Guide. Cambridge University Press and C. Q. Schneider and C. Wagemann "Set Theoretic Methods for the Social Sciences", Cambridge University Press.
Multiscale multifractal analysis (MMA) (GieraÅ towski et al., 2012)<DOI:10.1103/PhysRevE.85.021915>
is a time series analysis method, designed to describe scaling properties of fluctuations within the signal analyzed. The main result of this procedure is the so called Hurst surface h(q,s) , which is a dependence of the local Hurst exponent h (fluctuation scaling exponent) on the multifractal parameter q and the scale of observation s (data window width).
Implement various chromosomal instability metrics. CINmetrics (Chromosomal INstability metrics) provides functions to calculate various chromosomal instability metrics on masked Copy Number Variation(CNV) data at individual sample level. The chromosomal instability metrics have been implemented as described in the following studies: Baumbusch LO et al. 2013 <doi:10.1371/journal.pone.0054356>, Davidson JM et al. 2014 <doi:10.1371/journal.pone.0079079>, Chin SF et al. 2007 <doi:10.1186/gb-2007-8-10-r215>.