Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of tools for detecting influential cases in generalized mixed effects models. It analyses models that were estimated using lme4'. The basic rationale behind identifying influential data is that when single units are omitted from the data, models based on these data should not produce substantially different estimates. To standardize the assessment of how influential a (single group of) observation(s) is, several measures of influence are common practice, such as Cook's Distance. In addition, we provide a measure of percentage change of the fixed point estimates and a simple procedure to detect changing levels of significance.
This package provides a simplified version of the IDSL.UFA package to calculate isotopic profiles and adduct formulas from molecular formulas with no dependency on other R packages for online tools and educational mass spectrometry courses. The IDSL.SUFA package also provides an ancillary module to process user-defined adduct formulas.
Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.
Collect marketing data from Instagram Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides a personalized dynamic latent factor model (Zhang et al. (2024) <doi:10.1093/biomet/asae015>) for irregular multi-resolution time series data, to interpolate unsampled measurements from low-resolution time series.
This package contains datasets and several smaller functions suitable for analysis of interval-censored data. The package complements the book Bogaerts, Komárek and Lesaffre (2017, ISBN: 978-1-4200-7747-6) "Survival Analysis with Interval-Censored Data: A Practical Approach" <https://www.routledge.com/Survival-Analysis-with-Interval-Censored-Data-A-Practical-Approach-with/Bogaerts-Komarek-Lesaffre/p/book/9781420077476>. Full R code related to the examples presented in the book can be found at <https://ibiostat.be/online-resources/icbook/supplemental>. Packages mentioned in the "Suggests" section are used in those examples.
Clustering algorithm developed for use with plot inventories of species. It groups plots by subsets of diagnostic species rather than overall species composition. There is an unsupervised and a supervised mode, the latter accepting suggestions for species with greater weight and cluster medoids.
An implementation of the Line Segment Detector on digital images described in the paper: "LSD: A Fast Line Segment Detector with a False Detection Control" by Rafael Grompone von Gioi et al (2012). The algorithm is explained at <doi:10.5201/ipol.2012.gjmr-lsd>.
The inti package is part of the inkaverse project for developing different procedures and tools used in plant science and experimental designs. The mean aim of the package is to support researchers during the planning of experiments and data collection (tarpuy()), data analysis and graphics (yupana()) , and scientific writing. Learn more about the inkaverse project at <https://inkaverse.com/>.
Calculate incidence and prevalence using data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model. Incidence and prevalence can be estimated for the total population in a database or for a stratification cohort.
This package provides a fast (C) implementation of the iterative proportional fitting procedure.
Independent vector analysis (IVA) is a blind source separation (BSS) model where several datasets are jointly unmixed. This package provides several methods for the unmixing together with some performance measures. For details, see Anderson et al. (2011) <doi:10.1109/TSP.2011.2181836> and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.
Multivariate smoothing using iterative bias reduction with kernel, thin plate splines, Duchon splines or low rank splines.
Estimate the relative abundance of tissue-infiltrating immune subpopulations abundances using gene expression data.
To integrate multiple GSEA studies, we propose a hybrid strategy, iGSEA-AT, for choosing random effects (RE) versus fixed effect (FE) models, with an attempt to achieve the potential maximum statistical efficiency as well as stability in performance in various practical situations. In addition to iGSEA-AT, this package also provides options to perform integrative GSEA with testing based on a FE model (iGSEA-FE) and testing based on a RE model (iGSEA-RE). The approaches account for different set sizes when testing a database of gene sets. The function is easy to use, and the three approaches can be applied to both binary and continuous phenotypes.
This package provides examples of code for analyzing data or accomplishing tasks that may be useful to institutional or educational researchers.
Graphical visualization tools for analyzing the data produced by irace'. The iraceplot package enables users to analyze the performance and the parameter space data sampled by the configuration during the search process. It provides a set of functions that generate different plots to visualize the configurations sampled during the execution of irace and their performance. The functions just require the log file generated by irace and, in some cases, they can be used with user-provided data.
Derivation of indexes for benchmarking purposes. A methodology with flexible number of constituents is implemented. Also functions for market capitalization and volume weighted indexes with fixed number of constituents are available. The main function of the package, indexComp(), provides the derived index, suitable for analysis purposes. The functions indexUpdate(), indexMemberSelection() and indexMembersUpdate() are components of indexComp() and enable one to construct and continuously update an index, e.g. for display on a website. The methodology behind the functions provided gets introduced in Trimborn and Haerdle (2018) <doi:10.1016/j.jempfin.2018.08.004>.
This package provides analysis results and trial simulation functions for the I-SPY Acute Respiratory Disease Syndrome trial based on composite ranked outcomes. The composite ranked outcome is a hierarchical outcome where trial participants are ranked first by 28 day mortality, then ventilator days, then by advanced respiratory support days. A Bayesian win probability approach is used for analysis. Trial design options include group sequential looks for safety, superiority, futility, and adjustment of randomization probabilities.
Set of routines for influence diagnostics by using case-deletion in ordinary least squares, nonlinear regression [Ross (1987). <doi:10.2307/3315198>], ridge estimation [Walker and Birch (1988). <doi:10.1080/00401706.1988.10488370>] and least absolute deviations (LAD) regression [Sun and Wei (2004). <doi:10.1016/j.spl.2003.08.018>].
Display a 2D-matrix data as a interactive zoomable gray-scale image viewer, providing tools for manual data inspection. The viewer window shows cursor guiding lines and a corresponding data slices for both axes at the current cursor position. A tool-bar allows adjusting image display brightness/contrast through WebGL filters and performing basic high-pass/low-pass filtering.
Simple handling of survey data. Smart handling of meta-information like e.g. variable-labels value-labels and scale-levels. Easy access and validation of meta-information. Useage of value labels and values respectively for subsetting and recoding data.
Estimation of the most-left informative set of gross returns (i.e., the informative set). The procedure to compute the informative set adjusts the method proposed by Mariani et al. (2022a) <doi:10.1007/s11205-020-02440-6> and Mariani et al. (2022b) <doi:10.1007/s10287-022-00422-2> to gross returns of financial assets. This is accomplished through an adaptive algorithm that identifies sub-groups of gross returns in each iteration by approximating their distribution with a sequence of two-component log-normal mixtures. These sub-groups emerge when a significant change in the distribution occurs below the median of the financial returns, with their boundary termed as the â change point" of the mixture. The process concludes when no further change points are detected. The outcome encompasses parameters of the leftmost mixture distributions and change points of the analyzed financial time series. The functionalities of the INFOSET package include: (i) modelling asset distribution detecting the parameters which describe left tail behaviour (infoset function), (ii) clustering, (iii) labeling of the financial series for predictive and classification purposes through a Left Risk measure based on the first change point (LR_cp function) (iv) portfolio construction (ptf_construction function). The package also provide a specific function to construct rolling windows of different length size and overlapping time.
This package provides color palettes from Impressionism and post-Impressionism artworks. This package allows to select colors combinations while looking at the original paintings where colors were sampled from.