Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a graphical user interface to the IsoplotR package for radiometric geochronology. The GUI runs in an internet browser and can either be used offline, or hosted on a server to provide online access to the IsoplotR toolbox.
Coefficients of Interrater Reliability and Agreement for quantitative, ordinal and nominal data: ICC, Finn-Coefficient, Robinson's A, Kendall's W, Cohen's Kappa, ...
This package provides functions to access real-time infectious disease data from the disease.sh API', including COVID-19 global, US states, continent, and country statistics, vaccination coverage, influenza-like illness data from the Centers for Disease Control and Prevention (CDC), and more. Also includes curated datasets on a variety of infectious diseases such as influenza, measles, dengue, Ebola, tuberculosis, meningitis, AIDS, and others. The package supports epidemiological research and data analysis by combining API access with high-quality historical and survey datasets on infectious diseases. For more details on the disease.sh API', see <https://disease.sh/>.
Just analysis methods ('jam') base functions focused on bioinformatics. Version- and gene-centric alphanumeric sort, unique name and version assignment, colorized console and HTML output, color ramp and palette manipulation, Rmarkdown cache import, styled Excel worksheet import and export, interpolated raster output from smooth scatter and image plots, list to delimited vector, efficient list tools.
Uses the Jaccard similarity index to account for population structure in sequencing studies. This method was specifically designed to detect population stratification based on rare variants, hence it will be especially useful in rare variant analysis.
The function jskm() creates publication quality Kaplan-Meier plot with at risk tables below. svyjskm() provides plot for weighted Kaplan-Meier estimator.
Shared parameter models for the joint modeling of longitudinal and time-to-event data.
This package provides an R interface to Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any Julia function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like Julia'.
Analysis of repeated measurements and time-to-event data via random effects joint models. Fits the joint models proposed by Henderson and colleagues <doi:10.1093/biostatistics/1.4.465> (single event time) and by Williamson and colleagues (2008) <doi:10.1002/sim.3451> (competing risks events time) to a single continuous repeated measure. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-varying covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by a latent Gaussian process. The model is estimated using am Expectation Maximization algorithm. Some plotting functions and the variogram are also included. This project is funded by the Medical Research Council (Grant numbers G0400615 and MR/M013227/1).
This package provides functions for grid square codes in Japan (<https://www.stat.go.jp/english/data/mesh/index.html>). Generates the grid square codes from longitude/latitude, geometries, and the grid square codes of different scales, and vice versa.
An estimation method that can use computer simulations to approximate maximum-likelihood estimates even when the likelihood function can not be evaluated directly. It can be applied whenever it is feasible to conduct many simulations, but works best when the data is approximately Poisson distributed. It was originally designed for demographic inference in evolutionary biology (Naduvilezhath et al., 2011 <doi:10.1111/j.1365-294X.2011.05131.x>, Mathew et al., 2013 <doi:10.1002/ece3.722>). It has optional support for conducting coalescent simulation using the coala package.
This package provides data about the possible adverse events/reactions resulting from being injected with a vaccine/experimental gene therapy. Currently, this data set only includes information from six reference sources. Refer to the CITATION.cff file for the complete citations of the reference sources. For information about vaccination$/immunization$ hazards, visit <https://www.questionuniverse.com/rethink.html#vaccine>, <https://www.ecoccs.com/healing.html#vaccines>, <https://www.questionuniverse.com/rethink_current_crisis.html#cov_vaccin>, and <https://www.questionuniverse.com/vaccination.html>.
Read Japanese city codes (<https://www.e-stat.go.jp/municipalities/cities>) to get city and prefecture names, or convert to city codes at different points in time. In addition, it merges or splits wards of designated cities and gets all city codes at a specific point in time.
Minimal and memory efficient implementation of the junction tree algorithm using the Lauritzen-Spiegelhalter scheme; S. L. Lauritzen and D. J. Spiegelhalter (1988) <https://www.jstor.org/stable/2345762?seq=1>. The jti package is part of the paper <doi:10.18637/jss.v111.i02>.
All the data and functions used to produce the book. We do not expect most people to use the package for any other reason than to get simple access to the JAGS model files, the data, and perhaps run some of the simple examples. The authors of the book are David Lucy (now sadly deceased) and James Curran. It is anticipated that a manuscript will be provided to Taylor and Francis around February 2020, with bibliographic details to follow at that point. Until such time, further information can be obtained by emailing James Curran.
The Jalaali calendar, also known as the Persian or Solar Hijri calendar, is the official calendar of Iran and Afghanistan. It starts on Nowruz, the spring equinox, and follows an astronomical system for determining leap years. Each year consists of 365 or 366 days, divided into 12 months. This package provides functions for converting dates between the Jalaali and Gregorian calendars. The conversion calculations are based on the work of Kazimierz M. Borkowski (1996) (<doi:10.1007/BF00055188>), who used an analytical model of Earth's motion to compute equinoxes from AD 550 to 3800 and determine leap years based on Tehran time.
This package provides method used to check whether data have outlier in efficiency measurement of big samples with data envelopment analysis (DEA). In this jackstrap method, the package provides two criteria to define outliers: heaviside and k-s test. The technique was developed by Sousa and Stosic (2005) "Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers." <doi:10.1007/s11123-005-4702-4>.
Estimate risk caused by two extreme and dependent forcing variables using bivariate extreme value models as described in Zheng, Westra, and Sisson (2013) <doi:10.1016/j.jhydrol.2013.09.054>; Zheng, Westra and Leonard (2014) <doi:10.1002/2013WR014616>; Zheng, Leonard and Westra (2015) <doi:10.2166/hydro.2015.052>.
Helpful functions for using mesh code (80km to 100m) data in Japan. Visualize mesh code using ggplot2 and leaflet', etc.
An implementation of the Jaya optimization algorithm for both single-objective and multi-objective problems. Jaya is a population-based, gradient-free optimization algorithm capable of solving constrained and unconstrained optimization problems without hyperparameters. This package includes features such as multi-objective Pareto optimization, adaptive population adjustment, and early stopping. For further details, see R.V. Rao (2016) <doi:10.5267/j.ijiec.2015.8.004>.
Calculate statistical significance of Jaccard/Tanimoto similarity coefficients.
In the observational study design stage, matching/weighting methods are conducted. However, when many background variables are present, the decision as to which variables to prioritize for matching/weighting is not trivial. Thus, the joint treatment-outcome variable importance plots are created to guide variable selection. The joint variable importance plots enhance variable comparisons via unadjusted bias curves derived under the omitted variable bias framework. The plots translate variable importance into recommended values for tuning parameters in existing methods. Post-matching and/or weighting plots can also be used to visualize and assess the quality of the observational study design. The method motivation and derivation is presented in "Prioritizing Variables for Observational Study Design using the Joint Variable Importance Plot" by Liao et al. (2024) <doi:10.1080/00031305.2024.2303419>. See the package paper by Liao and Pimentel (2024) <doi:10.21105/joss.06093> for a beginner friendly user introduction.
Simplifies the process of estimating above ground biomass components for teak trees using a few basic inputs, based on the equations taken from the journal "Allometric equations for estimating above ground biomass and leaf area of planted teak (Tectona grandis) forests under agroforestry management in East Java, Indonesia" (Purwanto & Shiba, 2006) <doi:10.60409/forestresearch.76.0_1>. This function is most reliable when applied to trees from the same region where the equations were developed, specifically East Java, Indonesia. This function help to estimate the stem diameter at the lowest major living branch (DB) using the stem diameter at breast height with R^2 = 0.969. Estimate the branch dry weight (WB) using the stem diameter at breast height and tree height (R^2 = 0.979). Estimate the stem weight (WS) using the stem diameter at breast height and tree height (R^2 = 0.997. Also estimate the leaf dry weight (WL) using the stem diameter at the lowest major living branch (R^2 = 0.996).
Computes the Jackknife Mutual Information (JMI) between two random vectors and provides the p-value for dependence tests. See Zeng, X., Xia, Y. and Tong, H. (2018) <doi:10.1073/pnas.1715593115>.