Estimate the linear and nonlinear autoregressive distributed lag (ARDL & NARDL) models and the corresponding error correction models, and test for longrun and short-run asymmetric. The general-to-specific approach is also available in estimating the ARDL and NARDL models. The Pesaran, Shin & Smith (2001) (<doi:10.1002/jae.616>) bounds test for level relationships is also provided. The ardl.nardl package also performs short-run and longrun symmetric restrictions available at Shin et al. (2014) <doi:10.1007/978-1-4899-8008-3_9> and their corresponding tests.
This package provides functions to access data from public RESTful APIs including World Bank API and REST Countries API', retrieving real-time or historical information related to Algeria. The package enables users to query economic indicators and international demographic and geopolitical statistics in a reproducible way. It is designed for researchers, analysts, and developers who require reliable and programmatic access to Algerian data through established APIs. For more information on the APIs, see: World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392> and REST Countries API <https://restcountries.com/>.
Download data from the time-series databases of the Bundesbank, the German central bank. See the overview at the Bundesbank website (<https://www.bundesbank.de/en/statistics/time-series-databases>) for available series. The package provides only a single function, getSeries(), which supports both traditional and real-time datasets; it will also download meta data if available. Downloaded data can automatically be arranged in various formats, such as data frames or zoo series. The data may optionally be cached, so as to avoid repeated downloads of the same series.
This package provides a collection of novel tools for generating species distribution and abundance models (SDM) that are dynamic through both space and time. These highly flexible functions incorporate spatial and temporal aspects across key SDM stages; including when cleaning and filtering species occurrence data, generating pseudo-absence records, assessing and correcting sampling biases and autocorrelation, extracting explanatory variables and projecting distribution patterns. Throughout, functions utilise Google Earth Engine and Google Drive to minimise the computing power and storage demands associated with species distribution modelling at high spatio-temporal resolution.
This package provides functions to perform simulations of ANOVA designs of up to three factors. Calculates the observed power and average observed effect size for all main effects and interactions in the ANOVA, and all simple comparisons between conditions. Includes functions for analytic power calculations and additional helper functions that compute effect sizes for ANOVA designs, observed error rates in the simulations, and functions to plot power curves. Please see Lakens, D., & Caldwell, A. R. (2021). "Simulation-Based Power Analysis for Factorial Analysis of Variance Designs". <doi:10.1177/2515245920951503>.
This package implements a functional approximation of the four panel cointegration tests developed by Westerlund (2007) <doi:10.1111/j.1468-0084.2007.00477.x>. The tests are based on structural rather than residual dynamics and allow for heterogeneity in both the long-run cointegrating relationship and the short-run dynamics. The package includes logic for automated lag and lead selection via AIC/BIC, Bartlett kernel long-run variance estimation, and a bootstrap procedure to handle cross-sectional dependence. It also includes a bootstrapping distribution visualization function for diagnostic purposes.
The standard index of DNA methylation (beta) is computed from methylated and unmethylated signal intensities. Betas calculated from raw signal intensities perform well, but using 11 methylomic datasets we demonstrate that quantile normalization methods produce marked improvement. The commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also advantageous to normalize Type I and Type II assays separately. This package provides 15 flavours of betas and three performance metrics, with methods for objects produced by the methylumi and minfi packages.
This package provides a function to calibrate variant effect scores against evidence strength categories defined by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines. The method computes likelihood ratios of pathogenicity via kernel density estimation of pathogenic and benign score distributions, and derives score intervals corresponding to ACMG/AMP evidence levels. This enables researchers and clinical geneticists to interpret functional and computational variant scores in a reproducible and standardised manner. For details, see Badonyi and Marsh (2025) <doi:10.1093/bioinformatics/btaf503>.
Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <DOI:10.3390/ijms161025897>.
This package provides a collection of R functions were implemented from published and available analytic solutions for the One-Dimensional Boussinesq Equation (ground-water). In particular, the function "beq.lin()" is the analytic solution of the linearized form of Boussinesq Equation between two different head-based boundary (Dirichlet) conditions; "beq.song" is the non-linear power-series analytic solution of the motion of a wetting front over a dry bedrock (Song at al, 2007, see complete reference on function documentation). Bugs/comments/questions/collaboration of any kind are warmly welcomed.
Reads Word documents containing incomplete bibliographic references and produces an updated file with standardized and complete references. The package provides functions to retrieve missing authors, titles, journal details, volume, issue, and page numbers. Digital object identifiers (DOIs) are retrieved using the CrossRef application programming interface (API) <https://api.crossref.org>, and references are formatted following DOI-based citation standards as described by Paskin (2010) <doi:10.1000/182> and the citation.doi.org service <https://citation.doi.org>. The package is intended to simplify reference preparation for scientific journal submissions.
This package provides peruvian agricultural production data from the Agriculture Minestry of Peru (MINAGRI). The first version includes 6 crops: rice, quinoa, potato, sweet potato, tomato and wheat; all of them across 24 departments. Initially, in excel files which has been transformed and assembled using tidy data principles, i.e. each variable is in a column, each observation is a row and each value is in a cell. The variables variables are sowing and harvest area per crop, yield, production and price per plot, every one year, from 2004 to 2014.
The main functions in this package are with_cache() and cached_read(). The former is a simple way to cache an R object into a file on disk, using cachem'. The latter is a wrapper around any standard read function, but caches both the output and the file list info. If the input file list info hasn't changed, the cache is used; otherwise, the original files are re-read. This can save time if the original operation requires reading from many files, and/or involves lots of processing.
Citrus is a computational technique developed for the analysis of high dimensional cytometry data sets. This package extracts, statistically analyzes, and visualizes marker expression from citrus data. This code was used to generate data for Figures 3 and 4 in the forthcoming manuscript: Throm et al. â Identification of Enhanced Interferon-Gamma Signaling in Polyarticular Juvenile Idiopathic Arthritis with Mass Cytometryâ , JCI-Insight. For more information on Citrus, please see: Bruggner et al. (2014) <doi:10.1073/pnas.1408792111>. To download the citrus package, please see <https://github.com/nolanlab/citrus>.
Computes the minimum sample size required for the development of a new multivariable prediction model using the criteria proposed by Riley et al. (2018) <doi: 10.1002/sim.7992>. pmsampsize can be used to calculate the minimum sample size for the development of models with continuous, binary or survival (time-to-event) outcomes. Riley et al. (2018) <doi: 10.1002/sim.7992> lay out a series of criteria the sample size should meet. These aim to minimise the overfitting and to ensure precise estimation of key parameters in the prediction model.
Infrastructure and functions that can be used for integrating Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>) code into stand alone R packages which in turn use the CmdStan engine which is often accessed through CmdStanR'. Details given in Stan Development Team (2025) <https://mc-stan.org/cmdstanr/>. Using CmdStanR and pre-written Stan code can make package installation easy. Using staninside offers a way to cache user-compiled Stan models in user-specified directories reducing the need to recompile the same model multiple times.
This is an implementation of the algorithm described in Section 3 of Hosszejni and Frühwirth-Schnatter (2026) <doi:10.1016/j.jmva.2025.105536>. The algorithm is used to verify that the counting rule CR(r,1) holds for the sparsity pattern of the transpose of a factor loading matrix. As detailed in Section 2 of the same paper, if CR(r,1) holds, then the idiosyncratic variances are generically identified. If CR(r,1) does not hold, then we do not know whether the idiosyncratic variances are identified or not.
Covered uses modern Ruby features to generate comprehensive coverage, including support for templates which are compiled into Ruby. It has the following features:
Incremental coverage -- if you run your full test suite, and the run a subset, it will still report the correct coverage - so you can incrementally work on improving coverage.
Integration with RSpec, Minitest, Travis & Coveralls - no need to configure anything - out of the box support for these platforms.
It supports coverage of views -- templates compiled to Ruby code can be tracked for coverage reporting.
Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the EWSmethods website for more information, and tutorials.
Calculates fundamental IO matrices (Leontief, Wassily W. (1951) <doi:10.1038/scientificamerican1051-15>); within period analysis via various rankings and coefficients (Sonis and Hewings (2006) <doi:10.1080/09535319200000013>, Blair and Miller (2009) <ISBN:978-0-521-73902-3>, Antras et al (2012) <doi:10.3386/w17819>, Hummels, Ishii, and Yi (2001) <doi:10.1016/S0022-1996(00)00093-3>); across period analysis with impact analysis (Dietzenbacher, van der Linden, and Steenge (2006) <doi:10.1080/09535319300000017>, Sonis, Hewings, and Guo (2006) <doi:10.1080/09535319600000002>); and a variety of table operators.
This is the very popular mine sweeper game! The game requires you to find out tiles that contain mines through clues from unmasking neighboring tiles. Each tile that does not contain a mine shows the number of mines in its adjacent tiles. If you unmask all tiles that do not contain mines, you win the game; if you unmask any tile that contains a mine, you lose the game. For further game instructions, please run `help(run_game)` and check details. This game runs in X11-compatible devices with `grDevices::x11()`.
Extended tools for analyzing telemetry data using generalized hidden Markov models. Features of momentuHMM (pronounced ``momentum'') include data pre-processing and visualization, fitting HMMs to location and auxiliary biotelemetry or environmental data, biased and correlated random walk movement models, hierarchical HMMs, multiple imputation for incorporating location measurement error and missing data, user-specified design matrices and constraints for covariate modelling of parameters, random effects, decoding of the state process, visualization of fitted models, model checking and selection, and simulation. See McClintock and Michelot (2018) <doi:10.1111/2041-210X.12995>.
This package implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles. The package provides flags to fit a variety of model-based phase I design, including 1 stage models with or without individualized dose modification, 3-stage models with or without individualized dose modification, etc. Functions are provided to recommend dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters. Yin, Jun, et al. (2017) <doi:10.1002/sim.7134>.
Temporal disaggregation methods are used to disaggregate and interpolate a low frequency time series to a higher frequency series, where either the sum, the mean, the first or the last value of the resulting high frequency series is consistent with the low frequency series. Temporal disaggregation can be performed with or without one or more high frequency indicator series. Contains the methods of Chow-Lin, Santos-Silva-Cardoso, Fernandez, Litterman, Denton and Denton-Cholette, summarized in Sax and Steiner (2013) <doi:10.32614/RJ-2013-028>. Supports most R time series classes.