The microplot function writes a set of R graphics files to be used as microplots (sparklines) in tables in either LaTeX
', HTML', Word', or Excel files. For LaTeX
', we provide methods for the Hmisc::latex()
generic function to construct latex tabular environments which include the graphs. These can be used directly with the operating system pdflatex or latex command, or by using one of Sweave', knitr', rmarkdown', or Emacs org-mode as an intermediary. For MS Word', the msWord()
function uses the flextable package to construct Word tables which include the graphs. There are several distinct approaches for constructing HTML files. The simplest is to use the msWord()
function with argument filetype="html". Alternatively, use either Emacs org-mode or the htmlTable::htmlTable()
function to construct an HTML file containing tables which include the graphs. See the documentation for our as.htmlimg()
function. For Excel use on Windows', the file examples/irisExcel.xls
includes VBA code which brings the individual panels into individual cells in the spreadsheet. Examples in the examples and demo subdirectories are shown with lattice graphics, ggplot2 graphics, and base graphics. Examples for LaTeX
include Sweave (both LaTeX'-style
and Noweb'-style), knitr', emacs org-mode', and rmarkdown input files and their pdf output files. Examples for HTML include org-mode and Rmd input files and their webarchive HTML output files. In addition, the as.orgtable()
function can display a data.frame in an org-mode document. The examples for MS Word (with either filetype="docx" or filetype="html") work with all operating systems. The package does not require the installation of LaTeX
or MS Word to be able to write .tex or .docx files.
Enables you to create accessible modal dialogs, with confidence and with minimal configuration.
Generate central composite designs (CCD)with full as well as fractional factorial points (half replicate) and Box Behnken designs (BBD) with minimally changed run sequence.
This package provides a simple and trustworthy methodology for the analysis of misreported continuous time series. See Moriña, D, Fernández-Fontelo, A, Cabaña, A, Puig P. (2021) <arXiv:2003.09202v2>
.
This package implements two methods: a nonparametric risk adjustment and a data imputation method that use general population mortality tables to allow a correct analysis of time to disease recurrence. Also includes a powerful set of object oriented survival data simulation functions.
This package provides an extension to the lolog package by introducing the minTriadicClosure()
statistic to capture higher-order interactions among triplets of nodes. This function facilitates improved modelling of group formations and triadic closure in networks. A smoothing parameter has been incorporated to avoid numerical errors.
The nls.lm
function provides an R interface to lmder
and lmdif
from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls
-like calls using the nlsLM
function.
Various functions are provided to estimate parametric mixture models (with Gaussian, t, Laplace, log-concave distributions, etc.) and non-parametric mixture models. The package performs hypothesis tests and addresses label switching issues in mixture models. The package also allows for parameter estimation in mixture of regressions, proportion-varying mixture of regressions, and robust mixture of regressions.
Mixedpower uses pilotdata and a linear mixed model fitted with lme4 to simulate new data sets. Power is computed separate for every effect in the model output as the relation of significant simulations to all simulations. More conservative simulations as a protection against a bias in the pilotdata are available as well as methods for plotting the results.
This package contains the function mice.impute.midastouch()
. Technically this function is to be run from within the mice package (van Buuren et al. 2011), type ??mice. It substitutes the method pmm within mice by midastouch'. The authors have shown that midastouch is superior to default pmm'. Many ideas are based on Siddique / Belin 2008's MIDAS.
Using this package, one can determine the minimum sample size required so that the absolute deviation of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.
Providing C implementation for the computing of monotonic spline bases, including M-splines, I-splines, and C-splines, denoted by MIC splines. The definitions of the spline bases are described in Meyer (2008) <doi: 10.1214/08-AOAS167>. The package also provides the computing of constrained least-squares estimates when a subset of or all of the regression coefficients are constrained to be non-negative.
Using this package, one can determine the minimum sample size required so that the mean square error of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.
This package facilitates phyloseq exploration and analysis of taxonomic profiling data. This package provides tools for the manipulation, statistical analysis, and visualization of taxonomic profiling data. In addition to targeted case-control studies, microbiome facilitates scalable exploration of population cohorts. This package supports the independent phyloseq data format and expands the available toolkit in order to facilitate the standardization of the analyses and the development of best practices.
This package provides a generalization of the Synth package that is designed for data at a more granular level (e.g., micro-level). Provides functions to construct weights (including propensity score-type weights) and run analyses for synthetic control methods with micro- and meso-level data; see Robbins, Saunders, and Kilmer (2017) <doi:10.1080/01621459.2016.1213634> and Robbins and Davenport (2021) <doi:10.18637/jss.v097.i02>.
Multiple Imputation has been shown to be a flexible method to impute missing values by Van Buuren (2007) <doi:10.1177/0962280206074463>. Expanding on this, random forests have been shown to be an accurate model by Stekhoven and Buhlmann <arXiv:1105.0828>
to impute missing values in datasets. They have the added benefits of returning out of bag error and variable importance estimates, as well as being simple to run in parallel.
Measures niche breadth and overlap of microbial taxa from large matrices. Niche breadth measurements include Levins niche breadth (Bn) index, Hurlbert's Bn and Feinsinger's proportional similarity (PS) index. (Feinsinger, P., Spears, E.E., Poole, R.W. (1981) <doi:10.2307/1936664>). Niche overlap measurements include Levin's Overlap (Ludwig, J.A. and Reynolds, J.F. (1988, ISBN:0471832359)) and a Jaccard similarity index of Feinsinger's PS values between taxa pairs, as Proportional Overlap.
The function missForest
in this package is used to impute missing values, particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data, including complex interactions and non-linear relations. It yields an OOB imputation error estimate without the need of a test set or elaborate cross- validation. It can be run in parallel to save computation time.
Citrus is a computational technique developed for the analysis of high dimensional cytometry data sets. This package extracts, statistically analyzes, and visualizes marker expression from citrus data. This code was used to generate data for Figures 3 and 4 in the forthcoming manuscript: Throm et al. â Identification of Enhanced Interferon-Gamma Signaling in Polyarticular Juvenile Idiopathic Arthritis with Mass Cytometryâ , JCI-Insight. For more information on Citrus, please see: Bruggner et al. (2014) <doi:10.1073/pnas.1408792111>. To download the citrus package, please see <https://github.com/nolanlab/citrus>.
This is the very popular mine sweeper game! The game requires you to find out tiles that contain mines through clues from unmasking neighboring tiles. Each tile that does not contain a mine shows the number of mines in its adjacent tiles. If you unmask all tiles that do not contain mines, you win the game; if you unmask any tile that contains a mine, you lose the game. For further game instructions, please run `help(run_game)` and check details. This game runs in X11-compatible devices with `grDevices::x11()
`.
An open source software package written in R statistical language. It consist in a set of decision making tools to conduct missing person searches. Particularly, it allows computing optimal LR threshold for declaring potential matches in DNA-based database search. More recently mispitools incorporates preliminary investigation data based LRs. Statistical weight of different traces of evidence such as biological sex, age and hair color are presented. For citing mispitools please use the following references: Marsico and Caridi, 2023 <doi:10.1016/j.fsigen.2023.102891> and Marsico, Vigeland et al. 2021 <doi:10.1016/j.fsigen.2021.102519>.
It can be used to create/encode molecular "license-plates" from sequences and to also decode the "license-plates" back to sequences. While initially created for transfer RNA-derived small fragments (tRFs
), this tool can be used for any genomic sequences including but not limited to: tRFs
, microRNAs
, etc. The detailed information can reference to Pliatsika V, Loher P, Telonis AG, Rigoutsos I (2016) <doi:10.1093/bioinformatics/btw194>. It can also be used to annotate tRFs
. The detailed information can reference to Loher P, Telonis AG, Rigoutsos I (2017) <doi:10.1038/srep41184>.
This package provides tools for econometric analysis and economic modelling with the traditional two-input Constant Elasticity of Substitution (CES) function and with nested CES functions with three and four inputs. The econometric estimation can be done by the Kmenta approximation, or non-linear least-squares using various gradient-based or global optimisation algorithms. Some of these algorithms can constrain the parameters to certain ranges, e.g. economically meaningful values. Furthermore, the non-linear least-squares estimation can be combined with a grid-search for the rho-parameter(s). The estimation methods are described in Henningsen et al. (2021) <doi:10.4337/9781788976480.00030>.
With high-dimensional omics features, repeated measure ANOVA leads to longitudinal gene-environment interaction studies that have intra-cluster correlations, outlying observations and structured sparsity arising from the ANOVA design. In this package, we have developed robust sparse Bayesian mixed effect models tailored for the above studies (Fan et al. (2025) <doi:10.1093/jrsssc/qlaf027>). An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++'. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.