This package provides functionalities for performing stability analysis of genotype by environment interaction (GEI) to identify superior and stable genotypes across diverse environments. It implements Eberhart and Russellâ s ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinsonâ s Joint Linear Regression method (1963) (<doi:10.1071/AR9630742>), Wrickeâ s Ecovalence (1962, 1964), Shuklaâ s stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>), Kangâ s simultaneous selection for high yield and stability (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Effects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environment (GGE) Interaction methods.
The cartogram heatmaps generated by the included methods are an alternative to choropleth maps for the United States and are based on work by the Washington Post graphics department in their report on "The states most threatened by trade" (<http://www.washingtonpost.com/wp-srv/special/business/states-most-threatened-by-trade/>). "State bins" preserve as much of the geographic placement of the states as possible but have the look and feel of a traditional heatmap. Functions are provided that allow for use of a binned, discrete scale, a continuous scale or manually specified colors depending on what is needed for the underlying data.
This package implements confidence interval and sample size methods that are especially useful in psychological research. The methods can be applied in 1-group, 2-group, paired-samples, and multiple-group designs and to a variety of parameters including means, medians, proportions, slopes, standardized mean differences, standardized linear contrasts of means, plus several measures of correlation and association. Confidence interval and sample size functions are given for single parameters as well as differences, ratios, and linear contrasts of parameters. The sample size functions can be used to approximate the sample size needed to estimate a parameter or function of parameters with desired confidence interval precision or to perform a variety of hypothesis tests (directional two-sided, equivalence, superiority, noninferiority) with desired power. For details see: Statistical Methods for Psychologists, Volumes 1 â 4, <https://dgbonett.sites.ucsc.edu/>.
This package provides functions in this package provide solution to classical problem in survey methodology - an optimum sample allocation in stratified sampling. In this context, the optimum allocation is in the classical Tschuprow-Neyman's sense and it satisfies additional lower or upper bounds restrictions imposed on sample sizes in strata. There are few different algorithms available to use, and one them is based on popular sample allocation method that applies Neyman allocation to recursively reduced set of strata. This package also provides the function that computes a solution to the minimum cost allocation problem, which is a minor modification of the classical optimum sample allocation. This problem lies in the determination of a vector of strata sample sizes that minimizes total cost of the survey, under assumed fixed level of the stratified estimator's variance. As in the case of the classical optimum allocation, the problem of minimum cost allocation can be complemented by imposing upper-bounds constraints on sample sizes in strata.
The stratification of univariate populations under stratified sampling designs is implemented according to Khan et al. (2002) <doi:10.1177/0008068320020518> and Khan et al. (2015) <doi:10.1080/02664763.2015.1018674> in this library. It determines the Optimum Strata Boundaries (OSB) and Optimum Sample Sizes (OSS) for the study variable, y, using the best-fit frequency distribution of a survey variable (if data is available) or a hypothetical distribution (if data is not available). The method formulates the problem of determining the OSB as mathematical programming problem which is solved by using a dynamic programming technique. If a dataset of the population is available to the surveyor, the method estimates its best-fit distribution and determines the OSB and OSS under Neyman allocation directly. When the dataset is not available, stratification is made based on the assumption that the values of the study variable, y, are available as hypothetical realizations of proxy values of y from recent surveys. Thus, it requires certain distributional assumptions about the study variable. At present, it handles stratification for the populations where the study variable follows a continuous distribution, namely, Pareto, Triangular, Right-triangular, Weibull, Gamma, Exponential, Uniform, Normal, Log-normal and Cauchy distributions.
This package provides utilities to create or suppress start-up messages.
Allows the creation and manipulation of C++ std::vector's in R.
This package provides string parsing functionalities for generating plotnames, filenames and paths.
Support for reading and writing files in StatDataML---an
XML-based data exchange format.
This package provides an extendable, performant and multithreaded alt-string
implementation backed by C++ vectors and strings.
R Codes and Datasets for Stroup, W. W. (2012). Generalized Linear Mixed Models Modern Concepts, Methods and Applications, CRC Press.
This package provides a graphical user interface for cross-sectional network modeling with the statnet software suite <https://github.com/statnet>.
This package provides density, probability and quantile functions, and random number generation for (skew) stable distributions, using the parametrizations of Nolan.
The <http://standartox.uni-landau.de> database offers cleaned, harmonized and aggregated ecotoxicological test data, which can be used for assessing effects and risks of chemical concentrations found in the environment.
Estimation of model parameters for marked Hawkes process. Accounts for missing data in the estimation of the parameters. Technical details found in (Tucker et al., 2019 <DOI:10.1016/j.spasta.2018.12.004>).
This package provides data about the Star Wars movie franchise in a set of relational tables or as a complete DuckDB
database. All data was collected from the open source Star Wars API <https://swapi.dev/>.
This package provides a streamlined tool provides a graphical user interface for quality control based signal drift correction (QC-RFSC), integration of data from multi-batch MS-based experiments, and the comprehensive statistical analysis in metabolomics and proteomics.
Basic statistical methods with some modifications for the course Statistical Methods at Federal University of Bahia (Brazil). All methods in this packages are explained in the text book of Montgomery and Runger (2010) <ISBN: 978-1-119-74635-5>.
Generates an interactive visualization of topic correlations/ hierarchy in a Structural Topic Model (STM) of Roberts, Stewart, and Tingley. The package performs a hierarchical clustering of topics which are then exported to a JSON object and visualized using D3.
Miscellaneous functions for working with stars objects, mainly single-band rasters. Currently includes functions for: (1) focal filtering, (2) detrending of Digital Elevation Models, (3) calculating flow length, (4) calculating the Convergence Index, (5) calculating topographic aspect and topographic slope.
For Multi Parent Populations (MPP) Identity By Descend (IBD) probabilities are computed using Hidden Markov Models. These probabilities are then used in a mixed model approach for QTL Mapping as described in Li et al. (<doi:10.1007/s00122-021-03919-7>).
This package provides a stable approach to variable selection through stability selection and the use of a permutation-based objective stability threshold. Lima et al (2021) <doi:10.1038/s41598-020-79317-8>, Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>.
Generates a random quotation from a database of quotes on topics in statistics, data visualization and science. Other functions allow searching the quotes database by key term tags, or authors or creating a word cloud. The output is designed to be suitable for use at the console, in Rmarkdown and LaTeX
.
Message translation is often managed with po files and the gettext programme, but sometimes another solution is needed. In contrast to po files, a more flexible approach is used as in the Fluent <https://projectfluent.org/> project with R Markdown snippets. The key-value approach allows easier handling of the translated messages.