The t-designs represent a generalized class of balanced incomplete block designs in which the number of blocks in which any t-tuple of treatments (t >= 2) occur together is a constant. When the focus of an experiment lies in grading and selecting treatment subgroups, t-designs would be preferred over the conventional ones, as they have the additional advantage of t-tuple balance. t-designs can be advantageously used in identifying the best crop-livestock combination for a particular location in Integrated Farming Systems that will help in generating maximum profit. But as the number of components increases, the number of possible t-component combinations will also increase. Most often, combinations derived from specific components are only practically feasible, for example, in a specific locality, farmers may not be interested in keeping a pig or goat and hence combinations involving these may not be of any use in that locality. In such situations partially balanced t-designs with few selected combinations appearing in a constant number of blocks (while others not at all appearing) may be useful (Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2021)<doi:10.1080/03610918.2021.2008436>). Further, every location may not have the resources to form equally sized homogeneous blocks. Partially balanced t-designs with unequal block sizes (Damaraju Raghavarao & Bei Zhou (1998)<doi:10.1080/03610929808832657>. Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2022)." Partially Balanced t-designs with unequal block sizes") prove to be more suitable for such situations.This package generates three series of partially balanced t-designs namely Series 1, Series 2 and Series 3. Series 1 and Series 2 are designs having equal block sizes and with treatment structures 4(t + 1) and a prime number, respectively. Series 3 consists of designs with unequal block sizes and with treatment structure n(n-1)/2. This package is based on the function named PBtD() for generating partially balanced t-designs along with their parameters, information matrices, average variance factors and canonical efficiency factors.
Generate continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count (regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix, or one continuous variable with a mixture distribution. This package can be used to simulate data sets that mimic real-world clinical or genetic data sets (i.e., plasmodes, as in Vaughan et al., 2009 <DOI:10.1016/j.csda.2008.02.032>). The methods extend those found in the SimMultiCorrData R package. Standard normal variables with an imposed intermediate correlation matrix are transformed to generate the desired distributions. Continuous variables are simulated using either Fleishman (1978)'s third order <DOI:10.1007/BF02293811> or Headrick (2002)'s fifth order <DOI:10.1016/S0167-9473(02)00072-5> polynomial transformation method (the power method transformation, PMT). Non-mixture distributions require the user to specify mean, variance, skewness, standardized kurtosis, and standardized fifth and sixth cumulants. Mixture distributions require these inputs for the component distributions plus the mixing probabilities. Simulation occurs at the component level for continuous mixture distributions. The target correlation matrix is specified in terms of correlations with components of continuous mixture variables. These components are transformed into the desired mixture variables using random multinomial variables based on the mixing probabilities. However, the package provides functions to approximate expected correlations with continuous mixture variables given target correlations with the components. Binary and ordinal variables are simulated using a modification of ordsample() in package GenOrd'. Count variables are simulated using the inverse CDF method. There are two simulation pathways which calculate intermediate correlations involving count variables differently. Correlation Method 1 adapts Yahav and Shmueli's 2012 method <DOI:10.1002/asmb.901> and performs best with large count variable means and positive correlations or small means and negative correlations. Correlation Method 2 adapts Barbiero and Ferrari's 2015 modification of the GenOrd package <DOI:10.1002/asmb.2072> and performs best under the opposite scenarios. The optional error loop may be used to improve the accuracy of the final correlation matrix. The package also contains functions to calculate the standardized cumulants of continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries, and summarize and plot simulated variables.
This package provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the micromapST function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package with the BuildBorderGroup function. In April of 2022, it was announced that maptools', rgdal', and rgeos R packages would be retired in middle to end of 2023 and removed from the CRAN libraries. The BuildBorderGroup function was dependent on these packages. micromapST functions were not impacted by the retired R packages. Upgrading of BuildBorderGroup function was completed and released with version 3.0.0 on August 10, 2023 using the sf R package. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.
The Greymodels Shiny app is an interactive interface for statistical modelling and forecasting using grey-based models. It covers several state-of-the-art univariate and multivariate grey models. A user friendly interface allows users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within user chosen confidence intervals. Chang, C. (2019) <doi:10.24818/18423264/53.1.19.11>, Li, K., Zhang, T. (2019) <doi:10.1007/s12667-019-00344-0>, Ou, S. (2012) <doi:10.1016/j.compag.2012.03.007>, Li, S., Zhou, M., Meng, W., Zhou, W. (2019) <doi:10.1080/23307706.2019.1666310>, Xie, N., Liu, S. (2009) <doi:10.1016/j.apm.2008.01.011>, Shao, Y., Su, H. (2012) <doi:10.1016/j.aasri.2012.06.003>, Xie, N., Liu, S., Yang, Y., Yuan, C. (2013) <doi:10.1016/j.apm.2012.10.037>, Li, S., Miao, Y., Li, G., Ikram, M. (2020) <doi:10.1016/j.matcom.2019.12.020>, Che, X., Luo, Y., He, Z. (2013) <doi:10.4028/www.scientific.net/AMM.364.207>, Zhu, J., Xu, Y., Leng, H., Tang, H., Gong, H., Zhang, Z. (2016) <doi:10.1109/appeec.2016.7779929>, Luo, Y., Liao, D. (2012) <doi:10.4028/www.scientific.net/AMR.507.265>, Bilgil, H. (2020) <doi:10.3934/math.2021091>, Li, D., Chang, C., Chen, W., Chen, C. (2011) <doi:10.1016/j.apm.2011.04.006>, Chen, C. (2008) <doi:10.1016/j.chaos.2006.08.024>, Zhou, W., Pei, L. (2020) <doi:10.1007/s00500-019-04248-0>, Xiao, X., Duan, H. (2020) <doi:10.1016/j.engappai.2019.103350>, Xu, N., Dang, Y. (2015) <doi:10.1155/2015/606707>, Chen, P., Yu, H.(2014) <doi:10.1155/2014/242809>, Zeng, B., Li, S., Meng, W., Zhang, D. (2019) <doi:10.1371/journal.pone.0221333>, Liu, L., Wu, L. (2021) <doi:10.1016/j.apm.2020.08.080>, Hu, Y. (2020) <doi:10.1007/s00500-020-04765-3>, Zhou, P., Ang, B., Poh, K. (2006) <doi:10.1016/j.energy.2005.12.002>, Cheng, M., Li, J., Liu, Y., Liu, B. (2020) <doi:10.3390/su12020698>, Wang, H., Wang, P., Senel, M., Li, T. (2019) <doi:10.1155/2019/9049815>, Ding, S., Li, R. (2020) <doi:10.1155/2020/4564653>, Zeng, B., Li, C. (2018) <doi:10.1016/j.cie.2018.02.042>, Xie, N., Liu, S. (2015) <doi:10.1109/JSEE.2015.00013>, Zeng, X., Yan, S., He, F., Shi, Y. (2019) <doi:10.1016/j.apm.2019.11.032>.
Data from Gardner and Janson art history textbooks about both the artists featured in these books as well as their works. See Helen Gardner ("Art through the ages; an introduction to its history and significance," 1926, <https://find.library.duke.edu/catalog/DUKE000104481>. Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1980, ISBN: 0155037587). Fred S. Kleiner ("Gardnerâ s art through the ages: a global history," 2020, ISBN: 9781337630702). Horst de la Croix and Richard G. Tansey ("Gardner's art through the ages," 1986, ISBN: 0155037633). Helen Gardner ("Art through the ages; an introduction to its history and significance," 1936, <https://find.library.duke.edu/catalog/DUKE001199463>). Helen Gardner ("Art through the ages," 1948, <https://find.library.duke.edu/catalog/DUKE001199466>). Helen Gardner, revised under the editorship of Sumner M. Crosby ("Art through the ages," 1959, <https://find.library.duke.edu/catalog/DUKE001199469>). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1975, ISBN: 0155037560). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2013, ISBN: 9780495915423. Fred S. Kleiner, Christin J. Mamiya, Richard G. Tansey ("Gardnerâ s art through the ages," 2001, ISBN: 0155083155). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2016, ISBN: 9781285837840). Fred S. Kleiner, Christin J. Mamiya ("Gardnerâ s art through the ages," 2005, ISBN: 0534640958). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1970, ISBN: 0155037528). Helen Gardner, Richard G. Tansey, Fred S. Kleiner ("Gardnerâ s Art through the ages," 1996, ISBN: 0155011413). Helen Gardner, Horst de la Croix, Richard G. Tansey, Diane Kirkpatrick ("Gardnerâ s Art through the ages," 1991, ISBN: 0155037692). Helen Gardner, Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2009, ISBN: 9780495093077). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2007, ISBN: 0131934554). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2011, ISBN: 9780205685172). H. W. Janson, Anthony F. Janson ("History of Art," 2001, ISBN: 0810934469). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1986, ISBN: 013389388). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1977, ISBN: 0810910527). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1969, <https://find.library.duke.edu/catalog/DUKE000005734>). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1963, <https://find.library.duke.edu/catalog/DUKE001521852>). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1991, ISBN: 0810934019). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1995, ISBN: 0810934213).
Automatically generated RnBeads annotation package for the assembly rn5.
RNA-seq, sample size.
Sundry discrete probability distributions and helper functions.
Function to read and write the Stata file format.
RedCloth is a Ruby parser for the Textile markup language.
Generate utils::globalVariables() from roxygen2 @global and @autoglobal tags.
This package provides a wrapper around sentencepiece's esaxxx library.
This package provides An Ini configuration file parsing library in Rust.
Automatically generated RnBeads annotation package for the assembly mm9.
Platform Design Info for The Manufacturer's Name Rat230_2.
These functions are especially helpful when writing reports of data analysis using "Sweave".
This package provides a package containing an environment representing the RatToxFX.cdf file.
Downloads and parses SDF (Structural Description Format) and PDB (Protein Database) files for 3D rendering.
This package provides a Database Interface (DBI) compliant driver for R to access PostgreSQL database systems.
railties provides the core Rails internals including handling application bootup, plugins, generators, and Rake tasks.
shiny extension that adds regular expression filtering capabilities to the choice vector of the select list.
Processing logical operations such as AND/OR/NOT operations dynamically. It also handles nesting in the operations.
Exchange rate for Kenya Shilling against other currencies, US DOLLAR, EURO, STERLING POUND, Tanzania Shilling, Uganda Shilling.
This package provides a set of annotation maps for the REACTOME database, assembled using data from REACTOME.