Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create and customize interactive trees using the jQuery jsTree <https://www.jstree.com/> plugin library and the htmlwidgets package. These trees can be used directly from the R console, from RStudio', in Shiny apps and R Markdown documents.
This package provides model fitting, prediction, and plotting for joint models of longitudinal and multiple time-to-event data, including methods from Rizopoulos (2012) <doi:10.1201/b12208>. Useful for handling complex survival and longitudinal data in clinical research.
Allows to import functions and whole packages from Julia in R. Imported Julia functions can directly be called as R functions. Data structures can be translated between Julia and R. More details can also be found in the corresponding article <doi:10.18637/jss.v101.i06>.
Test for association between the observed data and their estimated latent variables. The jackstraw package provides a resampling strategy and testing scheme to estimate statistical significance of association between the observed data and their latent variables. Depending on the data type and the analysis aim, the latent variables may be estimated by principal component analysis (PCA), factor analysis (FA), K-means clustering, and related unsupervised learning algorithms. The jackstraw methods learn over-fitting characteristics inherent in this circular analysis, where the observed data are used to estimate the latent variables and used again to test against that estimated latent variables. When latent variables are estimated by PCA, the jackstraw enables statistical testing for association between observed variables and latent variables, as estimated by low-dimensional principal components (PCs). This essentially leads to identifying variables that are significantly associated with PCs. Similarly, unsupervised clustering, such as K-means clustering, partition around medoids (PAM), and others, finds coherent groups in high-dimensional data. The jackstraw estimates statistical significance of cluster membership, by testing association between data and cluster centers. Clustering membership can be improved by using the resulting jackstraw p-values and posterior inclusion probabilities (PIPs), with an application to unsupervised evaluation of cell identities in single cell RNA-seq (scRNA-seq).
Maximum likelihood estimation for the semiparametric joint modeling of survival and longitudinal data. Refer to the Journal of Statistical Software article: <doi:10.18637/jss.v093.i02>.
Generates interactive Jellyfish plots to visualize spatiotemporal tumor evolution by integrating sample and phylogenetic trees into a unified plot. This approach provides an intuitive way to analyze tumor heterogeneity and evolution over time and across anatomical locations. The Jellyfish plot visualization design was first introduced by Lahtinen, Lavikka, et al. (2023, <doi:10.1016/j.ccell.2023.04.017>). This package also supports visualizing ClonEvol results, a tool developed by Dang, et al. (2017, <doi:10.1093/annonc/mdx517>), for analyzing clonal evolution from multi-sample sequencing data. The clonevol package is not available on CRAN but can be installed from its GitHub repository (<https://github.com/hdng/clonevol>).
Miscellaneous tools and functions, including: generate descriptive statistics tables, format output, visualize relations among variables or check distributions, and generic functions for residual and model diagnostics.
This package provides an R interface to the JBrowse 2 genome browser. Enables embedding a JB2 genome browser in a Shiny app or R Markdown document. The browser can also be launched from an interactive R console. The browser can be loaded with a variety of common genomics data types, and can be used with a custom theme.
Fitting and analyzing a Joint Trait Distribution Model. The Joint Trait Distribution Model is implemented in the Bayesian framework using conjugate priors and posteriors, thus guaranteeing fast inference. In particular the package computes joint probabilities and multivariate confidence intervals, and enables the investigation of how they depend on the environment through partial response curves. The method implemented by the package is described in Poggiato et al. (2023) <doi:10.1111/geb.13706>.
Runs resampling-based tests jointly, e.g., sign-flip score tests from Hemerik et al., (2020) <doi:10.1111/rssb.12369>, to allow for multivariate testing, i.e., weak and strong control of the Familywise Error Rate or True Discovery Proportion.
This package provides tools to use API such as e-Stat (<https://www.e-stat.go.jp/>), the portal site for Japanese government statistics, and RESAS (Regional Economy and Society Analyzing System, <https://resas.go.jp>).
JSON-LD <https://www.w3.org/TR/json-ld/> is a light-weight syntax for expressing linked data. It is primarily intended for web-based programming environments, interoperable web services and for storing linked data in JSON-based databases. This package provides bindings to the JavaScript library for converting, expanding and compacting JSON-LD documents.
This package implements time series z-normalization, SAX, HOT-SAX, VSM, SAX-VSM, RePair, and RRA algorithms facilitating time series motif (i.e., recurrent pattern), discord (i.e., anomaly), and characteristic pattern discovery along with interpretable time series classification.
This package provides a long-term forecast model called "Jubilee-Tectonic model" is implemented to forecast future returns of the U.S. stock market, Treasury yield, and gold price. The five-factor model forecasts the 10-year and 20-year future equity returns with high R-squared above 80 percent. It is based on linear growth and mean reversion characteristics in the U.S. stock market. This model also enhances the CAPE model by introducing the hypothesis that there are fault lines in the historical CAPE, which can be calibrated and corrected through statistical learning. In addition, it contains a module for business cycles, optimal interest rate, and recession forecasts.
Since the reference management software (such as Zotero', Mendeley') exports Bib file journal abbreviation is not detailed enough, the journalabbr package only abbreviates the journal field of Bib file, and then outputs a new Bib file for generating reference format with journal abbreviation on other software (such as texstudio'). The abbreviation table is from JabRef'. At the same time, Shiny application is provided to generate thebibliography', a reference format that can be directly used for latex paper writing based on Rmd files.
This package provides methods to perform Joint graph Regularized Single-Cell Kullback-Leibler Sparse Non-negative Matrix Factorization ('jrSiCKLSNMF', pronounced "junior sickles NMF") on quality controlled single-cell multimodal omics count data. jrSiCKLSNMF specifically deals with dual-assay scRNA-seq and scATAC-seq data. This package contains functions to extract meaningful latent factors that are shared across omics modalities. These factors enable accurate cell-type clustering and facilitate visualizations. Methods for pre-processing, clustering, and mini-batch updates and other adaptations for larger datasets are also included. For further details on the methods used in this package please see Ellis, Roy, and Datta (2023) <doi:10.3389/fgene.2023.1179439>.
This package provides methods to access data sets from the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information) from R.
This package provides tools to explore and summarize relationship patterns between variables across one or multiple datasets. The package relies on efficient sampling strategies to estimate pairwise associations and supports quick exploratory data analysis for large or heterogeneous data sources.
Jointly estimates two-group means and covariances for matrix-variate data and calculates test statistics. This package implements the algorithms defined in Hornstein, Fan, Shedden, and Zhou (2018) <doi:10.1080/01621459.2018.1429275>.
Psychometric analysis and scoring of judgment data using polytomous Item-Response Theory (IRT) models, as described in Myszkowski and Storme (2019) <doi:10.1037/aca0000225> and Myszkowski (2021) <doi:10.1037/aca0000287>. A function is used to automatically compare and select models, as well as to present a variety of model-based statistics. Plotting functions are used to present category curves, as well as information, reliability and standard error functions.
This package implements delete-d jackknife resampling for robust statistical estimation. The package provides both weighted (HC3-adjusted) and unweighted versions of jackknife estimation, with parallel computation support. Suitable for biomedical research and other fields requiring robust variance estimation.
Evaluation of the Jacobi theta functions and related functions: Weierstrass elliptic function, Weierstrass sigma function, Weierstrass zeta function, Klein j-function, Dedekind eta function, lambda modular function, Jacobi elliptic functions, Neville theta functions, Eisenstein series, lemniscate elliptic functions, elliptic alpha function, Rogers-Ramanujan continued fractions, and Dixon elliptic functions. Complex values of the variable are supported.
Generates image data for fractals (Julia and Mandelbrot sets) on the complex plane in the given region and resolution. Benoit B Mandelbrot (1982).
Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a JAGS model, which will then automatically be passed to JAGS <https://mcmc-jags.sourceforge.io/> with the help of the package rjags'.