Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate concentration-time profiles from linear pharmacokinetic (PK) systems, possibly with first-order absorption or zero-order infusion, possibly with one or more peripheral compartments, and possibly under steady-state conditions. Single or multiple doses may be specified. Secondary (derived) PK parameters (e.g. Cmax, Ctrough, AUC, Tmax, half-life, etc.) are computed.
Non-parametric estimators for casual effects based on longitudinal modified treatment policies as described in Diaz, Williams, Hoffman, and Schenck <doi:10.1080/01621459.2021.1955691>, traditional point treatment, and traditional longitudinal effects. Continuous, binary, categorical treatments, and multivariate treatments are allowed as well are censored outcomes. The treatment mechanism is estimated via a density ratio classification procedure irrespective of treatment variable type. For both continuous and binary outcomes, additive treatment effects can be calculated and relative risks and odds ratios may be calculated for binary outcomes. Supports survival outcomes with competing risks (Diaz, Hoffman, and Hejazi; <doi:10.1007/s10985-023-09606-7>).
The solution of equality constrained least squares problem (LSE) is given through four analytics methods (Generalized QR Factorization, Lagrange Multipliers, Direct Elimination and Null Space method). We expose the orthogonal decomposition called Generalized QR Factorization (GQR) and also RQ factorization. Finally some codes for the solution of LSE applied in quaternions.
This package provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) "A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series." Journal of the Royal Statistical Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.
Fit linear models based on periodic splines, moderate model coefficients using multivariate adaptive shrinkage, then compute properties of the moderated curves.
This package provides functions that allow for convenient working with vector space models of semantics/distributional semantic models/word embeddings. Originally built for LSA models (hence the name), but can be used for all such vector-based models. For actually building a vector semantic space, use the package lsa or other specialized software. Downloadable semantic spaces can be found at <https://sites.google.com/site/fritzgntr/software-resources>.
This package creates HTML strings to embed tables, images or graphs in pop-ups of interactive maps created with packages like leaflet or mapview'. Handles local images located on the file system or via remote URL. Handles graphs created with lattice or ggplot2 as well as interactive plots created with htmlwidgets'.
Lag-sequential analysis is a method of assessing of patterns (what tends to follow what?) in sequences of codes. The codes are typically for discrete behaviors or states. The functions in this package read a stream of codes, or a frequency transition matrix, and produce a variety of lag sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, z values, adjusted residuals, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests. The methods are described in Bakeman & Quera (2011) <doi:10.1017/CBO9781139017343>, O'Connor (1999) <doi:10.3758/BF03200753>, Wampold & Margolin (1982) <doi:10.1037/0033-2909.92.3.755>, and Wampold (1995, ISBN:0-89391-919-5).
This package produces a group screening procedure that is based on maximum Lq-likelihood estimation, to simultaneously account for the group structure and data contamination in variable screening. The methods are described in Li, Y., Li, R., Qin, Y., Lin, C., & Yang, Y. (2021) Robust Group Variable Screening Based on Maximum Lq-likelihood Estimation. Statistics in Medicine, 40:6818-6834.<doi:10.1002/sim.9212>.
Whole-buffer DEFLATE-based compression and decompression of raw vectors using the libdeflate library (see <https://github.com/ebiggers/libdeflate>). Provides the user with additional control over the speed and the quality of DEFLATE compression compared to the fixed level of compression offered in R's memCompress() function. Also provides the libdeflate static library and C headers along with a CMake target and packageâ config file that ease linking of libdeflate in packages that compile and statically link bundled libraries using CMake'.
Software for computing a log-concave (maximum likelihood) estimator for independent and identically distributed data in any number of dimensions. For a detailed description of the method see Cule, Samworth and Stewart (2010, Journal of Royal Statistical Society Series B, <doi:10.1111/j.1467-9868.2010.00753.x>).
Providing a method for Local Discrimination via Latent Class Models. The approach is described in <https://www.r-project.org/conferences/useR-2009/abstracts/pdf/Bucker.pdf>.
Create lipidome-wide heatmaps of statistics with the lipidomeR'. The lipidomeR provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the lipidomeR helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
This is a Neural Network regression model implementation using Keras', consisting of 10 Long Short-Term Memory layers that are fully connected along with the rest of the inputs.
This package provides the tables from the Sean Lahman Baseball Database as a set of R data.frames. It uses the data on pitching, hitting and fielding performance and other tables from 1871 through 2024, as recorded in the 2025 version of the database. Documentation examples show how many baseball questions can be investigated.
This package provides tools are provided to expand vectors of short URLs into long URLs'. No API services are used, which may mean that this operates more slowly than API services do (since they usually cache results of expansions that every user of the service requests). You can setup your own caching layer with the memoise package if you wish to have a speedup during single sessions or add larger dependencies, such as Redis', to gain a longer-term performance boost at the expense of added complexity.
Local explanations of machine learning models describe, how features contributed to a single prediction. This package implements an explanation method based on LIME (Local Interpretable Model-agnostic Explanations, see Tulio Ribeiro, Singh, Guestrin (2016) <doi:10.1145/2939672.2939778>) in which interpretable inputs are created based on local rather than global behaviour of each original feature.
Implementation based on Zhang, Jie & Huang, Kun (2014) <doi:10.4137/CIN.S14021> Normalized ImQCM: An Algorithm for Detecting Weak Quasi-Cliques in Weighted Graph with Applications in Gene Co-Expression Module Discovery in Cancers. Cancer informatics, 13, CIN-S14021.
This package provides a collection of tools intended to make introductory statistics easier to teach, including wrappers for common hypothesis tests and basic data manipulation. It accompanies Navarro, D. J. (2015). Learning Statistics with R: A Tutorial for Psychology Students and Other Beginners, Version 0.6.
European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
This package provides a nonparametric method to approximate Laplacian graph spectra of a network with ordered vertices. This provides a computationally efficient algorithm for obtaining an accurate and smooth estimate of the graph Laplacian basis. The approximation results can then be used for tasks like change point detection, k-sample testing, and so on. The primary reference is Mukhopadhyay, S. and Wang, K. (2018, Technical Report).
Targeted Maximum Likelihood Estimation ('TMLE') of treatment/censoring specific mean outcome or marginal structural model for point-treatment and longitudinal data.
Implementation of several phenotype-based family genetic risk scores with unified input data and data preparation functions to help facilitate the required data preparation and management. The implemented family genetic risk scores are the extended liability threshold model conditional on family history from Pedersen (2022) <doi:10.1016/j.ajhg.2022.01.009> and Pedersen (2023) <https://www.nature.com/articles/s41467-023-41210-z>, Pearson-Aitken Family Genetic Risk Scores from Krebs (2024) <doi:10.1016/j.ajhg.2024.09.009>, and family genetic risk score from Kendler (2021) <doi:10.1001/jamapsychiatry.2021.0336>.
Implementation of the algorithm introduced in Shah, R. D. (2016) <https://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits, so the algorithm is very efficient.