_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-segmentier 0.1.2
Propagated dependencies: r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/raim/segmenTier
Licenses: GPL 2+
Synopsis: Similarity-Based Segmentation of Multidimensional Signals
Description:

This package provides a dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>. In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.

r-tidycharts 0.1.3
Propagated dependencies: r-testthat@3.2.3 r-stringr@1.5.1 r-rsvg@2.6.2 r-rlang@1.1.6 r-magrittr@2.0.3 r-magick@2.8.6 r-lubridate@1.9.4 r-knitr@1.50 r-htmlwidgets@1.6.4
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://mi2datalab.github.io/tidycharts/
Licenses: GPL 3+
Synopsis: Generate Tidy Charts Inspired by 'IBCS'
Description:

There is a wide range of R packages created for data visualization, but still, there was no simple and easily accessible way to create clean and transparent charts - up to now. The tidycharts package enables the user to generate charts compliant with International Business Communication Standards ('IBCS'). It means unified bar widths, colors, chart sizes, etc. Creating homogeneous reports has never been that easy! Additionally, users can apply semantic notation to indicate different data scenarios (plan, budget, forecast). What's more, it is possible to customize the charts by creating a personal color pallet with the possibility of switching to default options after the experiments. We wanted the package to be helpful in writing reports, so we also made joining charts in a one, clear image possible. All charts are generated in SVG format and can be shown in the RStudio viewer pane or exported to HTML output of knitr'/'markdown'.

r-soilhypfit 0.1-8
Dependencies: mpfr@4.2.1 gmp@6.3.0
Propagated dependencies: r-soilhyp@0.1.7 r-snowfall@1.84-6.3 r-rmpfr@1.1-0 r-quadprog@1.5-8 r-nloptr@2.2.1 r-mgcv@1.9-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=soilhypfit
Licenses: GPL 2+ LGPL 3
Synopsis: Modelling of Soil Water Retention and Hydraulic Conductivity Data
Description:

This package provides functions for efficiently estimating properties of the Van Genuchten-Mualem model for soil hydraulic parameters from possibly sparse soil water retention and hydraulic conductivity data by multi-response parameter estimation methods (Stewart, W.E., Caracotsios, M. Soerensen, J.P. (1992) "Parameter estimation from multi-response data" <doi:10.1002/aic.690380502>). Parameter estimation is simplified by exploiting the fact that residual and saturated water contents and saturated conductivity are conditionally linear parameters (Bates, D. M. and Watts, D. G. (1988) "Nonlinear Regression Analysis and Its Applications" <doi:10.1002/9780470316757>). Estimated parameters are optionally constrained by the evaporation characteristic length (Lehmann, P., Bickel, S., Wei, Z. and Or, D. (2020) "Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions" <doi:10.1029/2019WR025963>) to ensure that the estimated parameters are physically valid. Common S3 methods and further utility functions allow to process, explore and visualise estimation results.

r-enrichwith 0.3.1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/ikosmidis/enrichwith
Licenses: GPL 2 GPL 3
Synopsis: Methods to enrich R objects with extra components
Description:

This package provides the "enrich" method to enrich list-like R objects with new, relevant components. The current version has methods for enriching objects of class family, link-glm, lm, glm and betareg. The resulting objects preserve their class, so all methods associated with them still apply. The package also provides the enriched_glm function that has the same interface as glm but results in objects of class enriched_glm. In addition to the usual components in a glm object, enriched_glm objects carry an object-specific simulate method and functions to compute the scores, the observed and expected information matrix, the first-order bias, as well as model densities, probabilities, and quantiles at arbitrary parameter values. The package can also be used to produce customizable source code templates for the structured implementation of methods to compute new components and enrich arbitrary objects.

r-thermimage 4.1.3
Dependencies: perl@5.36.0 imagemagick@6.9.13-5 ffmpeg@6.1.1 perl-image-exiftool@12.70
Propagated dependencies: r-tiff@0.1-12 r-png@0.1-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=Thermimage
Licenses: GPL 2+
Synopsis: Thermal Image Analysis
Description:

This package provides a collection of functions and routines for inputting thermal image video files, plotting and converting binary raw data into estimates of temperature. First published 2015-03-26. Written primarily for research purposes in biological applications of thermal images. v1 included the base calculations for converting thermal image binary values to temperatures. v2 included additional equations for providing heat transfer calculations and an import function for thermal image files (v2.2.3 fixed error importing thermal image to windows OS). v3. Added numerous functions for converting thermal image, videos, rewriting and exporting. v3.1. Added new functions to convert files. v3.2. Fixed the various functions related to finding frame times. v4.0. fixed an error in atmospheric attenuation constants, affecting raw2temp and temp2raw functions. Recommend update for use with long distance calculations. v.4.1.3 changed to frameLocates to reflect change to as.character() to format().

r-negligible 0.1.9
Propagated dependencies: r-wrs2@1.1-7 r-rockchalk@1.8.157 r-nptest@1.1 r-mbess@4.9.3 r-lavaan@0.6-19 r-ggplot2@3.5.2 r-fungible@2.4.4 r-ez@4.4-0 r-e1071@1.7-16 r-dplyr@1.1.4 r-desctools@0.99.60
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=negligible
Licenses: GPL 3
Synopsis: Collection of Functions for Negligible Effect/Equivalence Testing
Description:

Researchers often want to evaluate whether there is a negligible relationship among variables. The negligible package provides functions that are useful for conducting negligible effect testing (also called equivalence testing). For example, there are functions for evaluating the equivalence of means or the presence of a negligible association (correlation or regression). Beribisky, N., Mara, C., & Cribbie, R. A. (2020) <doi:10.20982/tqmp.16.4.p424>. Beribisky, N., Davidson, H., Cribbie, R. A. (2019) <doi:10.7717/peerj.6853>. Shiskina, T., Farmus, L., & Cribbie, R. A. (2018) <doi:10.20982/tqmp.14.3.p167>. Mara, C. & Cribbie, R. A. (2017) <doi:10.1080/00220973.2017.1301356>. Counsell, A. & Cribbie, R. A. (2015) <doi:10.1111/bmsp.12045>. van Wieringen, K. & Cribbie, R. A. (2014) <doi:10.1111/bmsp.12015>. Goertzen, J. R. & Cribbie, R. A. (2010) <doi:10.1348/000711009x475853>. Cribbie, R. A., Gruman, J. & Arpin-Cribbie, C. (2004) <doi:10.1002/jclp.10217>.

r-polymatrix 0.9.16
Propagated dependencies: r-polynom@1.4-1 r-matrix@1.7-3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/namezys/polymatrix
Licenses: Expat
Synopsis: Infrastructure for Manipulation Polynomial Matrices
Description:

Implementation of class "polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial. It is based on the package polynom and uses a lot of its methods to implement matrix operations. This package includes 3 methods of triangularization of polynomial matrices: Extended Euclidean algorithm which is most classical but numerically unstable; Sylvester algorithm based on LQ decomposition; Interpolation algorithm is based on LQ decomposition and Newton interpolation. Both methods are described in D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization, IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-508) <doi:10.1109/9.751344> and in Salah Labhalla, Henri Lombardi & Roger Marlin, Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux, Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-92) <doi:10.1016/0304-3975(95)00090-9>.

r-metaforest 0.1.5
Propagated dependencies: r-ranger@0.17.0 r-metafor@4.8-0 r-metadat@1.4-0 r-gtable@0.3.6 r-ggplot2@3.5.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cjvanlissa.github.io/metaforest/
Licenses: GPL 3
Synopsis: Exploring Heterogeneity in Meta-Analysis using Random Forests
Description:

Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.

r-oryzaprobe 0.1.0
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=OryzaProbe
Licenses: GPL 3
Synopsis: Rice Microarray Probe ID Conversion, from Probe ID to RAP-DB ID
Description:

Microarray probe ID is not convenient for further enrichment analysis and target gene selection. The package is created for the rice microarray probe ID conversion. This package can convert microarray probe ID from GPL6864 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6864>, GPL8852 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8852>, and GPL2025 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025> platforms to RAP-DB ID. RAP-DB "The Rice Annotation Project Database" <https://rapdb.dna.affrc.go.jp> is a well-known database for rice Oryza sativa, and the gene ID in this database is widely used in many areas related to rice research. For multiple probes representing a single gene, This package can merge them by taking the mean, max, or min value of these probes. Or we can keep multiple probes by appending sequence numbers to duplicate the RAP-DB ID.

r-fastmatrix 0.6
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/faosorios/fastmatrix
Licenses: GPL 3
Synopsis: Fast Computation of some Matrices Useful in Statistics
Description:

Small set of functions to fast computation of some matrices and operations useful in statistics and econometrics. Currently, there are functions for efficient computation of duplication, commutation and symmetrizer matrices with minimal storage requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula) and iterative solvers for linear systems are also available. In addition, the package includes a number of common statistical procedures such as the sweep operator, weighted mean and covariance matrix using an online algorithm, linear regression (using Cholesky, QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal selection of the ridge parameter considering several procedures), omnibus tests for univariate normality, functions to compute the multivariate skewness, kurtosis, the Mahalanobis distance (checking the positive defineteness), and the Wilson-Hilferty transformation of gamma variables. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.

r-grcdesigns 1.0.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GRCdesigns
Licenses: GPL 2+
Synopsis: Generalized Row-Column Designs
Description:

When the number of treatments is large with limited experimental resources then Row-Column(RC) designs with multiple units per cell can be used. These designs are called Generalized Row-Column (GRC) designs and are defined as designs with v treatments in p rows and q columns such that the intersection of each row and column (cell) consists of k experimental units. For example (Bailey & Monod (2001)<doi:10.1111/1467-9469.00235>), to conduct an experiment for comparing 4 treatments using 4 plants with leaves at 2 different heights row-column design with two units per cell can be used. A GRC design is said to be structurally complete if corresponding to the intersection of each row and column, there appears at least two treatments. A GRC design is said to be structurally incomplete if corresponding to the intersection of any row and column, there is at least one cell which does not contain any treatment.

r-htestclust 0.2.2
Propagated dependencies: r-mass@7.3-65 r-bootstrap@2019.6
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=htestClust
Licenses: Expat
Synopsis: Reweighted Marginal Hypothesis Tests for Clustered Data
Description:

This package provides a collection of reweighted marginal hypothesis tests for clustered data, based on reweighting methods of Williamson, J., Datta, S., and Satten, G. (2003) <doi:10.1111/1541-0420.00005>. The tests in this collection are clustered analogs to well-known hypothesis tests in the classical setting, and are appropriate for data with cluster- and/or group-size informativeness. The syntax and output of functions are modeled after common, recognizable functions native to R. Methods used in the package refer to Gregg, M., Datta, S., and Lorenz, D. (2020) <doi:10.1177/0962280220928572>, Nevalainen, J., Oja, H., and Datta, S. (2017) <doi:10.1002/sim.7288> Dutta, S. and Datta, S. (2015) <doi:10.1111/biom.12447>, Lorenz, D., Datta, S., and Harkema, S. (2011) <doi:10.1002/sim.4368>, Datta, S. and Satten, G. (2008) <doi:10.1111/j.1541-0420.2007.00923.x>, Datta, S. and Satten, G. (2005) <doi:10.1198/016214504000001583>.

r-hdcpdetect 0.1.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HDcpDetect
Licenses: GPL 3
Synopsis: Detect Change Points in Means of High Dimensional Data
Description:

Objective: Implement new methods for detecting change points in high-dimensional time series data. These new methods can be applied to non-Gaussian data, account for spatial and temporal dependence, and detect a wide variety of change-point configurations, including changes near the boundary and changes in close proximity. Additionally, this package helps address the â small n, large pâ problem, which occurs in many research contexts. This problem arises when a dataset contains changes that are visually evident but do not rise to the level of statistical significance due to the small number of observations and large number of parameters. The problem is overcome by treating the dimensions as a whole and scaling the test statistics only by its standard deviation, rather than scaling each dimension individually. Due to the computational complexity of the functions, the package runs best on datasets with a relatively large number of attributes but no more than a few hundred observations.

r-lgdtoolkit 0.2.0
Propagated dependencies: r-monobin@0.2.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/andrija-djurovic/LGDtoolkit
Licenses: GPL 3+
Synopsis: Collection of Tools for LGD Rating Model Development
Description:

The goal of this package is to cover the most common steps in Loss Given Default (LGD) rating model development. The main procedures available are those that refer to bivariate and multivariate analysis. In particular two statistical methods for multivariate analysis are currently implemented â OLS regression and fractional logistic regression. Both methods are also available within different blockwise model designs and both have customized stepwise algorithms. Descriptions of these customized designs are available in Siddiqi (2016) <doi:10.1002/9781119282396.ch10> and Anderson, R.A. (2021) <doi:10.1093/oso/9780192844194.001.0001>. Although they are explained for PD model, the same designs are applicable for LGD model with different underlying regression methods (OLS and fractional logistic regression). To cover other important steps for LGD model development, it is recommended to use LGDtoolkit package along with PDtoolkit', and monobin (or monobinShiny') packages. Additionally, LGDtoolkit provides set of procedures handy for initial and periodical model validation.

r-tredesigns 1.0.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TREDesigns
Licenses: GPL 2+
Synopsis: Ternary Residual Effect Designs
Description:

There are some experimental scenarios where each experimental unit receives a sequence of treatments across multiple periods, and treatment effects persist beyond the period of application. It focuses on the construction and calculation of the parametric value of the residual effect designs balanced for carryover effects, also referred to as crossover designs, change-over designs, or repeated measurements designs (Aggarwal and Jha, 2010<doi:10.1080/15598608.2010.10412013>). The primary objective of the package is to generate a new class of Balanced Ternary Residual Effect Designs (BTREDs), balanced for carryover effects tailored explicitly for situations where the number of periods is less than or equal to the number of treatments. In addition, the package provides four new classes of Partially Balanced Ternary Residual Effect Designs (PBTREDs), constructed using incomplete block designs, initial sequences, and rectangular association scheme. In addition, one extra function is included to help study the parametric properties of a given residual effect design.

r-clustblock 4.1.1
Propagated dependencies: r-factominer@2.11
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ClustBlock
Licenses: Expat
Synopsis: Clustering of Datasets
Description:

Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. Different thresholds per cluster can be sets. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

r-chessboard 0.1
Propagated dependencies: r-tidyr@1.3.1 r-sf@1.0-21 r-rlang@1.1.6 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/frbcesab/chessboard
Licenses: GPL 2+
Synopsis: Create Network Connections Based on Chess Moves
Description:

This package provides functions to work with directed (asymmetric) and undirected (symmetric) spatial networks. It makes the creation of connectivity matrices easier, i.e. a binary matrix of dimension n x n, where n is the number of nodes (sampling units) indicating the presence (1) or the absence (0) of an edge (link) between pairs of nodes. Different network objects can be produced by chessboard': node list, neighbor list, edge list, connectivity matrix. It can also produce objects that will be used later in Moran's Eigenvector Maps (Dray et al. (2006) <doi:10.1016/j.ecolmodel.2006.02.015>) and Asymetric Eigenvector Maps (Blanchet et al. (2008) <doi:10.1016/j.ecolmodel.2008.04.001>), methods available in the package adespatial (Dray et al. (2023) <https://CRAN.R-project.org/package=adespatial>). This work is part of the FRB-CESAB working group Bridge <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/bridge/>.

r-flowscreen 2.1
Propagated dependencies: r-zyp@0.11-1 r-evir@1.7-4 r-changepoint@2.3
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FlowScreen
Licenses: GPL 2+
Synopsis: Daily Streamflow Trend and Change Point Screening
Description:

Screens daily streamflow time series for temporal trends and change-points. This package has been primarily developed for assessing the quality of daily streamflow time series. It also contains tools for plotting and calculating many different streamflow metrics. The package can be used to produce summary screening plots showing change-points and significant temporal trends for high flow, low flow, and/or baseflow statistics, or it can be used to perform more detailed hydrological time series analyses. The package was designed for screening daily streamflow time series from Water Survey Canada and the United States Geological Survey but will also work with streamflow time series from many other agencies. Package update to version 2.0 made updates to read.flows function to allow loading of GRDC and ROBIN streamflow record formats. This package uses the `changepoint` package for change point detection. For more information on change point methods, see the changepoint package at <https://cran.r-project.org/package=changepoint>.

r-npboottprm 0.3.2
Propagated dependencies: r-sn@2.1.1 r-shinythemes@1.2.0 r-shiny@1.10.0 r-mmints@0.2.0 r-mkinfer@1.2 r-mass@7.3-65 r-lmperm@2.1.4 r-ggplot2@3.5.2 r-fgarch@4033.92 r-dt@0.33
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/mightymetrika/npboottprm
Licenses: Expat
Synopsis: Nonparametric Bootstrap Test with Pooled Resampling
Description:

Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.

r-binaryeppm 3.0
Propagated dependencies: r-numderiv@2016.8-1.1 r-lmtest@0.9-40 r-formula@1.2-5 r-expm@1.0-0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BinaryEPPM
Licenses: GPL 2
Synopsis: Mean and Scale-Factor Modeling of Under- And Over-Dispersed Binary Data
Description:

Under- and over-dispersed binary data are modeled using an extended Poisson process model (EPPM) appropriate for binary data. A feature of the model is that the under-dispersion relative to the binomial distribution only needs to be greater than zero, but the over-dispersion is restricted compared to other distributional models such as the beta and correlated binomials. Because of this, the examples focus on under-dispersed data and how, in combination with the beta or correlated distributions, flexible models can be fitted to data displaying both under- and over-dispersion. Using Generalized Linear Model (GLM) terminology, the functions utilize linear predictors for the probability of success and scale-factor with various link functions for p, and log link for scale-factor, to fit a variety of models relevant to areas such as bioassay. Details of the EPPM are in Faddy and Smith (2012) <doi:10.1002/bimj.201100214> and Smith and Faddy (2019) <doi:10.18637/jss.v090.i08>.

r-diffenrich 0.1.2
Propagated dependencies: r-stringr@1.5.1 r-rlang@1.1.6 r-reshape2@1.4.4 r-here@1.0.1 r-ggplot2@3.5.2 r-ggnewscale@0.5.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/SabaLab/diffEnrich
Licenses: GPL 2
Synopsis: Given a List of Gene Symbols, Performs Differential Enrichment Analysis
Description:

Compare functional enrichment between two experimentally-derived groups of genes or proteins (Peterson, DR., et al.(2018)) <doi: 10.1371/journal.pone.0198139>. Given a list of gene symbols, diffEnrich will perform differential enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) REST API. This package provides a number of functions that are intended to be used in a pipeline. Briefly, the user provides a KEGG formatted species id for either human, mouse or rat, and the package will download and clean species specific ENTREZ gene IDs and map them to their respective KEGG pathways by accessing KEGG's REST API. KEGG's API is used to guarantee the most up-to-date pathway data from KEGG. Next, the user will identify significantly enriched pathways from two gene sets, and finally, the user will identify pathways that are differentially enriched between the two gene sets. In addition to the analysis pipeline, this package also provides a plotting function.

r-shelltrace 3.5.1
Propagated dependencies: r-xlsx@0.6.5 r-tiff@0.1-12 r-bmp@0.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/nielsjdewinter/ShellTrace
Licenses: GPL 3
Synopsis: Bivalve Growth and Trace Element Accumulation Model
Description:

This package contains all the formulae of the growth and trace element uptake model described in the equally-named Geoscientific Model Development paper (de Winter, 2017, <doi:10.5194/gmd-2017-137>). The model takes as input a file with X- and Y-coordinates of digitized growth increments recognized on a longitudinal cross section through the bivalve shell, as well as a BMP file of an elemental map of the cross section surface with chemically distinct phases separated by phase analysis. It proceeds by a step-by-step process described in the paper, by which digitized growth increments are used to calculate changes in shell height, shell thickness, shell volume, shell mass and shell growth rate through the bivalve's life time. Then, results of this growth modelling are combined with the trace element mapping results to trace the incorporation of trace elements into the bivalve shell. Results of various modelling parameters can be exported in the form of XLSX files.

r-modifiedmk 1.6
Propagated dependencies: r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=modifiedmk
Licenses: AGPL 3
Synopsis: Modified Versions of Mann Kendall and Spearman's Rho Trend Tests
Description:

Power of non-parametric Mann-Kendall test and Spearmanâ s Rho test is highly influenced by serially correlated data. To address this issue, trend tests may be applied on the modified versions of the time series data by Block Bootstrapping (BBS), Prewhitening (PW) , Trend Free Prewhitening (TFPW), Bias Corrected Prewhitening and Variance Correction Approach by calculating effective sample size. Mann, H. B. (1945).<doi:10.1017/CBO9781107415324.004>. Kendall, M. (1975). Multivariate analysis. Charles Griffin&Company Ltd,. sen, P. K. (1968).<doi:10.2307/2285891>. à nöz, B., & Bayazit, M. (2012) <doi:10.1002/hyp.8438>. Hamed, K. H. (2009).<doi:10.1016/j.jhydrol.2009.01.040>. Yue, S., & Wang, C. Y. (2002) <doi:10.1029/2001WR000861>. Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002) <doi:10.1002/hyp.1095>. Hamed, K. H., & Ramachandra Rao, A. (1998) <doi:10.1016/S0022-1694(97)00125-X>. Yue, S., & Wang, C. Y. (2004) <doi:10.1023/B:WARM.0000043140.61082.60>.

r-pretestcad 1.0.2
Propagated dependencies: r-stringr@1.5.1 r-rlang@1.1.6 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/JauntyJJS/pretestcad
Licenses: Expat
Synopsis: Pretest Probability for Coronary Artery Disease
Description:

An application to calculate a patient's pretest probability (PTP) for obstructive Coronary Artery Disease (CAD) from a collection of guidelines or studies. Guidelines usually comes from the American Heart Association (AHA), American College of Cardiology (ACC) or European Society of Cardiology (ESC). Examples of PTP scores that comes from studies are the 2020 Winther et al. basic, Risk Factor-weighted Clinical Likelihood (RF-CL) and Coronary Artery Calcium Score-weighted Clinical Likelihood (CACS-CL) models <doi:10.1016/j.jacc.2020.09.585>, 2019 Reeh et al. basic and clinical models <doi:10.1093/eurheartj/ehy806> and 2017 Fordyce et al. PROMISE Minimal-Risk Tool <doi:10.1001/jamacardio.2016.5501>. As diagnosis of CAD involves a costly and invasive coronary angiography procedure for patients, having a reliable PTP for CAD helps doctors to make better decisions during patient management. This ensures high risk patients can be diagnosed and treated early for CAD while avoiding unnecessary testing for low risk patients.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014