_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bclustlong 0.1.3
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mcclust@1.0.1 r-mass@7.3-65 r-lme4@1.1-37
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BClustLonG
Licenses: GPL 2
Synopsis: Dirichlet Process Mixture Model for Clustering Longitudinal Gene Expression Data
Description:

Many clustering methods have been proposed, but most of them cannot work for longitudinal gene expression data. BClustLonG is a package that allows us to perform clustering analysis for longitudinal gene expression data. It adopts a linear-mixed effects framework to model the trajectory of genes over time, while clustering is jointly conducted based on the regression coefficients obtained from all genes. To account for the correlations among genes and alleviate the high dimensionality challenges, factor analysis models are adopted for the regression coefficients. The Dirichlet process prior distribution is utilized for the means of the regression coefficients to induce clustering. This package allows users to specify which variables to use for clustering (intercepts or slopes or both) and whether a factor analysis model is desired. More details about this method can be found in Jiehuan Sun, et al. (2017) <doi:10.1002/sim.7374>.

r-qaensemble 1.0.0
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://cran.r-project.org/package=QAEnsemble
Licenses: GPL 2+
Synopsis: Ensemble Quadratic and Affine Invariant Markov Chain Monte Carlo
Description:

The Ensemble Quadratic and Affine Invariant Markov chain Monte Carlo algorithms provide an efficient way to perform Bayesian inference in difficult parameter space geometries. The Ensemble Quadratic Monte Carlo algorithm was developed by Militzer (2023) <doi:10.3847/1538-4357/ace1f1>. The Ensemble Affine Invariant algorithm was developed by Goodman and Weare (2010) <doi:10.2140/camcos.2010.5.65> and it was implemented in Python by Foreman-Mackey et al (2013) <doi:10.48550/arXiv.1202.3665>. The Quadratic Monte Carlo method was shown to perform better than the Affine Invariant method in the paper by Militzer (2023) <doi:10.3847/1538-4357/ace1f1> and the Quadratic Monte Carlo method is the default method used. The Chen-Shao Highest Posterior Density Estimation algorithm is used for obtaining credible intervals and the potential scale reduction factor diagnostic is used for checking the convergence of the chains.

r-spheredata 0.1.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/santosoph/spheredata
Licenses: FSDG-compatible
Synopsis: Students' Performance Dataset in Physics Education Research (SPHERE)
Description:

This package provides a multidimensional dataset of students performance assessment in high school physics. The SPHERE dataset was collected from 497 students in four public high schools specifically measuring their conceptual understanding, scientific ability, and attitude toward physics [see Santoso et al. (2024) <doi:10.17632/88d7m2fv7p.1>]. The data collection was conducted using some research based assessments established by the physics education research community. They include the Force Concept Inventory, the Force and Motion Conceptual Evaluation, the Rotational and Rolling Motion Conceptual Survey, the Fluid Mechanics Concept Inventory, the Mechanical Waves Conceptual Survey, the Thermal Concept Evaluation, the Survey of Thermodynamic Processes and First and Second Laws, the Scientific Abilities Assessment Rubrics, and the Colorado Learning Attitudes about Science Survey. Students attributes related to gender, age, socioeconomic status, domicile, literacy, physics identity, and test results administered using teachers developed items are also reported in this dataset.

r-spatialgev 1.0.1
Propagated dependencies: r-tmb@1.9.18 r-rcppeigen@0.3.4.0.2 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-evd@2.3-7.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SpatialGEV
Licenses: GPL 3
Synopsis: Fit Spatial Generalized Extreme Value Models
Description:

Fit latent variable models with the GEV distribution as the data likelihood and the GEV parameters following latent Gaussian processes. The models in this package are built using the template model builder TMB in R, which has the fast ability to integrate out the latent variables using Laplace approximation. This package allows the users to choose in the fit function which GEV parameter(s) is considered as a spatially varying random effect following a Gaussian process, so the users can fit spatial GEV models with different complexities to their dataset without having to write the models in TMB by themselves. This package also offers methods to sample from both fixed and random effects posteriors as well as the posterior predictive distributions at different spatial locations. Methods for fitting this class of models are described in Chen, Ramezan, and Lysy (2024) <doi:10.48550/arXiv.2110.07051>.

r-archeofrag 1.2.3
Propagated dependencies: r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/sebastien-plutniak/archeofrag
Licenses: GPL 3
Synopsis: Spatial Analysis in Archaeology from Refitting Fragments
Description:

This package provides methods to analyse spatial units in archaeology from the relationships between refitting fragmented objects scattered in these units (e.g. stratigraphic layers). Graphs are used to model archaeological observations. The package is mainly based on the igraph package for graph analysis. Functions can: 1) create, manipulate, visualise, and simulate fragmentation graphs, 2) measure the cohesion and admixture of archaeological spatial units, and 3) characterise the topology of a specific set of refitting relationships. A series of published empirical datasets is included. Documentation about archeofrag is provided by a vignette and by the accompanying scientific papers: Plutniak (2021, Journal of Archaeological Science, <doi:10.1016/j.jas.2021.105501>) and Plutniak (2022, Journal of Open Source Software, <doi:10.21105/joss.04335>). This package is complemented by the archeofrag.gui R package, a companion GUI application available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.

r-daltoolbox 1.2.747
Propagated dependencies: r-tree@1.0-45 r-reshape@0.8.10 r-randomforest@4.7-1.2 r-nnet@7.3-20 r-ggplot2@4.0.1 r-fnn@1.1.4.1 r-e1071@1.7-16 r-dplyr@1.1.4 r-dbscan@1.2.3 r-cluster@2.1.8.1 r-class@7.3-23 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cefet-rj-dal.github.io/daltoolbox/
Licenses: Expat
Synopsis: Leveraging Experiment Lines to Data Analytics
Description:

The natural increase in the complexity of current research experiments and data demands better tools to enhance productivity in Data Analytics. The package is a framework designed to address the modern challenges in data analytics workflows. The package is inspired by Experiment Line concepts. It aims to provide seamless support for users in developing their data mining workflows by offering a uniform data model and method API. It enables the integration of various data mining activities, including data preprocessing, classification, regression, clustering, and time series prediction. It also offers options for hyper-parameter tuning and supports integration with existing libraries and languages. Overall, the package provides researchers with a comprehensive set of functionalities for data science, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.

r-phylopairs 0.1.1
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-phytools@2.5-2 r-loo@2.8.0 r-bh@1.87.0-1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=phylopairs
Licenses: GPL 3+
Synopsis: Comparative Analyses of Lineage-Pair Traits
Description:

Facilitates the testing of causal relationships among lineage-pair traits in a phylogenetically informed context. Lineage-pair traits are characters that are defined for pairs of lineages instead of individual taxa. Examples include the strength of reproductive isolation, range overlap, competition coefficient, diet niche similarity, and relative hybrid fitness. Users supply a lineage-pair dataset and a phylogeny. phylopairs calculates a covariance matrix for the pairwise-defined data and provides built-in models to test for relationships among variables while taking this covariance into account. Bayesian sampling is run through built-in Stan programs via the rstan package. The various models and methods that this package makes available are described in Anderson et al. (In Review), Coyne and Orr (1989) <doi:10.1111/j.1558-5646.1989.tb04233.x>, Fitzpatrick (2002) <doi:10.1111/j.0014-3820.2002.tb00860.x>, and Castillo (2007) <doi:10.1002/ece3.3093>.

r-surveydown 1.0.1
Propagated dependencies: r-yaml@2.3.10 r-xml2@1.5.0 r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-rvest@1.0.5 r-rstudioapi@0.17.1 r-rpostgres@1.4.8 r-rmarkdown@2.30 r-quarto@1.5.1 r-pool@1.0.4 r-miniui@0.1.2 r-markdown@2.0 r-jsonlite@2.0.0 r-htmltools@0.5.8.1 r-fs@1.6.6 r-dotenv@1.0.3 r-dbi@1.2.3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://pkg.surveydown.org
Licenses: Expat
Synopsis: Markdown-Based Programmable Surveys Using 'Quarto' and 'shiny'
Description:

Generate programmable surveys using markdown and R code chunks. Surveys are composed of two files: a survey.qmd Quarto file defining the survey content (pages, questions, etc), and an app.R file defining a shiny app with global settings (libraries, database configuration, etc.) and server configuration options (e.g., conditional skipping / display, etc.). Survey data collected from respondents is stored in a PostgreSQL database. Features include controls for conditional skip logic (skip to a page based on an answer to a question), conditional display logic (display a question based on an answer to a question), a customizable progress bar, and a wide variety of question types, including multiple choice (single choice and multiple choices), select, text, numeric, multiple choice buttons, text area, and dates. Because the surveys render into a shiny app, designers can also leverage the reactive capabilities of shiny to create dynamic and interactive surveys.

r-archetypal 1.3.1
Propagated dependencies: r-plot3d@1.4.2 r-matrix@1.7-4 r-lpsolve@5.6.23 r-inflection@1.3.7 r-geometry@0.5.2 r-entropy@1.3.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=archetypal
Licenses: GPL 2+
Synopsis: Finds the Archetypal Analysis of a Data Frame
Description:

This package performs archetypal analysis by using Principal Convex Hull Analysis under a full control of all algorithmic parameters. It contains a set of functions for determining the initial solution, the optimal algorithmic parameters and the optimal number of archetypes. Post run tools are also available for the assessment of the derived solution. Morup, M., Hansen, LK (2012) <doi:10.1016/j.neucom.2011.06.033>. Hochbaum, DS, Shmoys, DB (1985) <doi:10.1287/moor.10.2.180>. Eddy, WF (1977) <doi:10.1145/355759.355768>. Barber, CB, Dobkin, DP, Huhdanpaa, HT (1996) <doi:10.1145/235815.235821>. Christopoulos, DT (2016) <doi:10.2139/ssrn.3043076>. Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., Sunde, U. (2018), <doi:10.1093/qje/qjy013>. Christopoulos, DT (2015) <doi:10.1016/j.jastp.2015.03.009> . Murari, A., Peluso, E., Cianfrani, Gaudio, F., Lungaroni, M., (2019), <doi:10.3390/e21040394>.

r-chilemapas 0.4.0
Propagated dependencies: r-stringr@1.6.0 r-sf@1.0-23 r-rlang@1.1.6 r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://pacha.dev/chilemapas/
Licenses: GPL 3
Synopsis: Mapas de las Divisiones Politicas y Administrativas de Chile (Maps of the Political and Administrative Divisions of Chile)
Description:

Mapas terrestres con topologias simplificadas. Estos mapas no tienen precision geodesica, por lo que aplica el DFL-83 de 1979 de la Republica de Chile y se consideran referenciales sin validez legal. No se incluyen los territorios antarticos y bajo ningun evento estos mapas significan que exista una cesion u ocupacion de territorios soberanos en contra del Derecho Internacional por parte de Chile. Esta paquete esta documentado intencionalmente en castellano asciificado para que funcione sin problema en diferentes plataformas. (Terrestrial maps with simplified toplogies. These maps lack geodesic precision, therefore DFL-83 1979 of the Republic of Chile applies and are considered to have no legal validity. Antartic territories are excluded and under no event these maps mean there is a cession or occupation of sovereign territories against International Laws from Chile. This package was intentionally documented in asciified spanish to make it work without problem on different platforms.).

r-metamorphr 0.2.0
Propagated dependencies: r-withr@3.0.2 r-vctrs@0.6.5 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringi@1.8.7 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-pcamethods@2.2.0 r-missforest@1.6.1 r-magrittr@2.0.4 r-impute@1.84.0 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-crayon@1.5.3 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/yasche/metamorphr
Licenses: Expat
Synopsis: Tidy and Streamlined Metabolomics Data Workflows
Description:

Facilitate tasks typically encountered during metabolomics data analysis including data import, filtering, missing value imputation (Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>, Stekhoven et al. (2012) <doi:10.1093/bioinformatics/btr597>, Tibshirani et al. (2017) <doi:10.18129/B9.BIOC.IMPUTE>, Troyanskaya et al. (2001) <doi:10.1093/bioinformatics/17.6.520>), normalization (Bolstad et al. (2003) <doi:10.1093/bioinformatics/19.2.185>, Dieterle et al. (2006) <doi:10.1021/ac051632c>, Zhao et al. (2020) <doi:10.1038/s41598-020-72664-6>) transformation, centering and scaling (Van Den Berg et al. (2006) <doi:10.1186/1471-2164-7-142>) as well as statistical tests and plotting. metamorphr introduces a tidy (Wickham et al. (2019) <doi:10.21105/joss.01686>) format for metabolomics data and is designed to make it easier to build elaborate analysis workflows and to integrate them with tidyverse packages including dplyr and ggplot2'.

r-euclimatch 1.0.2
Propagated dependencies: r-terra@1.8-86 r-rcppparallel@5.1.11-1 r-rcpp@1.1.0 r-rcolorbrewer@1.1-3 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=Euclimatch
Licenses: GPL 3+
Synopsis: Euclidean Climatch Algorithm
Description:

An interface for performing climate matching using the Euclidean "Climatch" algorithm. Functions provide a vector of climatch scores (0-10) for each location (i.e., grid cell) within the recipient region, the percent of climatch scores >= a threshold value, and mean climatch score. Tools for parallelization and visualizations are also provided. Note that the floor function that rounds the climatch score down to the nearest integer has been removed in this implementation and the â Climatchâ algorithm, also referred to as the â Climateâ algorithm, is described in: Crombie, J., Brown, L., Lizzio, J., & Hood, G. (2008). â Climatch user manualâ . The method for the percent score is described in: Howeth, J.G., Gantz, C.A., Angermeier, P.L., Frimpong, E.A., Hoff, M.H., Keller, R.P., Mandrak, N.E., Marchetti, M.P., Olden, J.D., Romagosa, C.M., and Lodge, D.M. (2016). <doi:10.1111/ddi.12391>.

r-silhouette 0.9.6
Propagated dependencies: r-lifecycle@1.0.4 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://kskbhat.github.io/Silhouette/
Licenses: GPL 2
Synopsis: Proximity Measure Based Diagnostics for Standard, Soft, and Multi-Way Clustering
Description:

Quantifies clustering quality by measuring both cohesion within clusters and separation between clusters. Implements advanced silhouette width computations for diverse clustering structures, including: simplified silhouette (Van der Laan et al., 2003) <doi:10.1080/0094965031000136012>, Probability of Alternative Cluster normalization methods (Raymaekers & Rousseeuw, 2022) <doi:10.1080/10618600.2022.2050249>, fuzzy clustering and silhouette diagnostics using membership probabilities (Campello & Hruschka, 2006; Menardi, 2011; Bhat & Kiruthika, 2024) <doi:10.1016/j.fss.2006.07.006>, <doi:10.1007/s11222-010-9169-0>, <doi:10.1080/23737484.2024.2408534>, and multi-way clustering extensions such as block and tensor clustering (Schepers et al., 2008; Bhat & Kiruthika, 2025) <doi:10.1007/s00357-008-9005-9>, <doi:10.21203/rs.3.rs-6973596/v1>. Provides tools for computation and visualization (Rousseeuw, 1987) <doi:10.1016/0377-0427(87)90125-7> to support robust and reproducible cluster diagnostics across standard, soft, and multi-way clustering settings.

r-segmentier 0.1.2
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/raim/segmenTier
Licenses: GPL 2+
Synopsis: Similarity-Based Segmentation of Multidimensional Signals
Description:

This package provides a dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>. In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.

r-tidycharts 0.1.3
Propagated dependencies: r-testthat@3.3.0 r-stringr@1.6.0 r-rsvg@2.7.0 r-rlang@1.1.6 r-magrittr@2.0.4 r-magick@2.9.0 r-lubridate@1.9.4 r-knitr@1.50 r-htmlwidgets@1.6.4
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://mi2datalab.github.io/tidycharts/
Licenses: GPL 3+
Synopsis: Generate Tidy Charts Inspired by 'IBCS'
Description:

There is a wide range of R packages created for data visualization, but still, there was no simple and easily accessible way to create clean and transparent charts - up to now. The tidycharts package enables the user to generate charts compliant with International Business Communication Standards ('IBCS'). It means unified bar widths, colors, chart sizes, etc. Creating homogeneous reports has never been that easy! Additionally, users can apply semantic notation to indicate different data scenarios (plan, budget, forecast). What's more, it is possible to customize the charts by creating a personal color pallet with the possibility of switching to default options after the experiments. We wanted the package to be helpful in writing reports, so we also made joining charts in a one, clear image possible. All charts are generated in SVG format and can be shown in the RStudio viewer pane or exported to HTML output of knitr'/'markdown'.

r-enrichwith 0.4.0
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/ikosmidis/enrichwith
Licenses: GPL 2 GPL 3
Synopsis: Methods to enrich R objects with extra components
Description:

This package provides the "enrich" method to enrich list-like R objects with new, relevant components. The current version has methods for enriching objects of class family, link-glm, lm, glm and betareg. The resulting objects preserve their class, so all methods associated with them still apply. The package also provides the enriched_glm function that has the same interface as glm but results in objects of class enriched_glm. In addition to the usual components in a glm object, enriched_glm objects carry an object-specific simulate method and functions to compute the scores, the observed and expected information matrix, the first-order bias, as well as model densities, probabilities, and quantiles at arbitrary parameter values. The package can also be used to produce customizable source code templates for the structured implementation of methods to compute new components and enrich arbitrary objects.

r-soilhypfit 0.1-8
Dependencies: mpfr@4.2.2 gmp@6.3.0
Propagated dependencies: r-soilhyp@0.1.7 r-snowfall@1.84-6.3 r-rmpfr@1.1-2 r-quadprog@1.5-8 r-nloptr@2.2.1 r-mgcv@1.9-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=soilhypfit
Licenses: GPL 2+ LGPL 3
Synopsis: Modelling of Soil Water Retention and Hydraulic Conductivity Data
Description:

This package provides functions for efficiently estimating properties of the Van Genuchten-Mualem model for soil hydraulic parameters from possibly sparse soil water retention and hydraulic conductivity data by multi-response parameter estimation methods (Stewart, W.E., Caracotsios, M. Soerensen, J.P. (1992) "Parameter estimation from multi-response data" <doi:10.1002/aic.690380502>). Parameter estimation is simplified by exploiting the fact that residual and saturated water contents and saturated conductivity are conditionally linear parameters (Bates, D. M. and Watts, D. G. (1988) "Nonlinear Regression Analysis and Its Applications" <doi:10.1002/9780470316757>). Estimated parameters are optionally constrained by the evaporation characteristic length (Lehmann, P., Bickel, S., Wei, Z. and Or, D. (2020) "Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions" <doi:10.1029/2019WR025963>) to ensure that the estimated parameters are physically valid. Common S3 methods and further utility functions allow to process, explore and visualise estimation results.

r-thermimage 4.1.3
Dependencies: perl@5.36.0 imagemagick@6.9.13-5 ffmpeg@8.0 perl-image-exiftool@12.70
Propagated dependencies: r-tiff@0.1-12 r-png@0.1-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=Thermimage
Licenses: GPL 2+
Synopsis: Thermal Image Analysis
Description:

This package provides a collection of functions and routines for inputting thermal image video files, plotting and converting binary raw data into estimates of temperature. First published 2015-03-26. Written primarily for research purposes in biological applications of thermal images. v1 included the base calculations for converting thermal image binary values to temperatures. v2 included additional equations for providing heat transfer calculations and an import function for thermal image files (v2.2.3 fixed error importing thermal image to windows OS). v3. Added numerous functions for converting thermal image, videos, rewriting and exporting. v3.1. Added new functions to convert files. v3.2. Fixed the various functions related to finding frame times. v4.0. fixed an error in atmospheric attenuation constants, affecting raw2temp and temp2raw functions. Recommend update for use with long distance calculations. v.4.1.3 changed to frameLocates to reflect change to as.character() to format().

r-negligible 0.1.9
Propagated dependencies: r-wrs2@1.1-7 r-rockchalk@1.8.157 r-nptest@1.1 r-mbess@4.9.41 r-lavaan@0.6-20 r-ggplot2@4.0.1 r-fungible@2.4.4.1 r-ez@4.4-0 r-e1071@1.7-16 r-dplyr@1.1.4 r-desctools@0.99.60
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=negligible
Licenses: GPL 3
Synopsis: Collection of Functions for Negligible Effect/Equivalence Testing
Description:

Researchers often want to evaluate whether there is a negligible relationship among variables. The negligible package provides functions that are useful for conducting negligible effect testing (also called equivalence testing). For example, there are functions for evaluating the equivalence of means or the presence of a negligible association (correlation or regression). Beribisky, N., Mara, C., & Cribbie, R. A. (2020) <doi:10.20982/tqmp.16.4.p424>. Beribisky, N., Davidson, H., Cribbie, R. A. (2019) <doi:10.7717/peerj.6853>. Shiskina, T., Farmus, L., & Cribbie, R. A. (2018) <doi:10.20982/tqmp.14.3.p167>. Mara, C. & Cribbie, R. A. (2017) <doi:10.1080/00220973.2017.1301356>. Counsell, A. & Cribbie, R. A. (2015) <doi:10.1111/bmsp.12045>. van Wieringen, K. & Cribbie, R. A. (2014) <doi:10.1111/bmsp.12015>. Goertzen, J. R. & Cribbie, R. A. (2010) <doi:10.1348/000711009x475853>. Cribbie, R. A., Gruman, J. & Arpin-Cribbie, C. (2004) <doi:10.1002/jclp.10217>.

r-polymatrix 0.9.16
Propagated dependencies: r-polynom@1.4-1 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/namezys/polymatrix
Licenses: Expat
Synopsis: Infrastructure for Manipulation Polynomial Matrices
Description:

Implementation of class "polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial. It is based on the package polynom and uses a lot of its methods to implement matrix operations. This package includes 3 methods of triangularization of polynomial matrices: Extended Euclidean algorithm which is most classical but numerically unstable; Sylvester algorithm based on LQ decomposition; Interpolation algorithm is based on LQ decomposition and Newton interpolation. Both methods are described in D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization, IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-508) <doi:10.1109/9.751344> and in Salah Labhalla, Henri Lombardi & Roger Marlin, Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux, Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-92) <doi:10.1016/0304-3975(95)00090-9>.

r-metaforest 0.1.5
Propagated dependencies: r-ranger@0.17.0 r-metafor@4.8-0 r-metadat@1.4-0 r-gtable@0.3.6 r-ggplot2@4.0.1 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cjvanlissa.github.io/metaforest/
Licenses: GPL 3
Synopsis: Exploring Heterogeneity in Meta-Analysis using Random Forests
Description:

Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.

r-oryzaprobe 0.1.0
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=OryzaProbe
Licenses: GPL 3
Synopsis: Rice Microarray Probe ID Conversion, from Probe ID to RAP-DB ID
Description:

Microarray probe ID is not convenient for further enrichment analysis and target gene selection. The package is created for the rice microarray probe ID conversion. This package can convert microarray probe ID from GPL6864 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6864>, GPL8852 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8852>, and GPL2025 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025> platforms to RAP-DB ID. RAP-DB "The Rice Annotation Project Database" <https://rapdb.dna.affrc.go.jp> is a well-known database for rice Oryza sativa, and the gene ID in this database is widely used in many areas related to rice research. For multiple probes representing a single gene, This package can merge them by taking the mean, max, or min value of these probes. Or we can keep multiple probes by appending sequence numbers to duplicate the RAP-DB ID.

r-grcdesigns 1.0.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GRCdesigns
Licenses: GPL 2+
Synopsis: Generalized Row-Column Designs
Description:

When the number of treatments is large with limited experimental resources then Row-Column(RC) designs with multiple units per cell can be used. These designs are called Generalized Row-Column (GRC) designs and are defined as designs with v treatments in p rows and q columns such that the intersection of each row and column (cell) consists of k experimental units. For example (Bailey & Monod (2001)<doi:10.1111/1467-9469.00235>), to conduct an experiment for comparing 4 treatments using 4 plants with leaves at 2 different heights row-column design with two units per cell can be used. A GRC design is said to be structurally complete if corresponding to the intersection of each row and column, there appears at least two treatments. A GRC design is said to be structurally incomplete if corresponding to the intersection of any row and column, there is at least one cell which does not contain any treatment.

r-htestclust 0.2.2
Propagated dependencies: r-mass@7.3-65 r-bootstrap@2019.6
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=htestClust
Licenses: Expat
Synopsis: Reweighted Marginal Hypothesis Tests for Clustered Data
Description:

This package provides a collection of reweighted marginal hypothesis tests for clustered data, based on reweighting methods of Williamson, J., Datta, S., and Satten, G. (2003) <doi:10.1111/1541-0420.00005>. The tests in this collection are clustered analogs to well-known hypothesis tests in the classical setting, and are appropriate for data with cluster- and/or group-size informativeness. The syntax and output of functions are modeled after common, recognizable functions native to R. Methods used in the package refer to Gregg, M., Datta, S., and Lorenz, D. (2020) <doi:10.1177/0962280220928572>, Nevalainen, J., Oja, H., and Datta, S. (2017) <doi:10.1002/sim.7288> Dutta, S. and Datta, S. (2015) <doi:10.1111/biom.12447>, Lorenz, D., Datta, S., and Harkema, S. (2011) <doi:10.1002/sim.4368>, Datta, S. and Satten, G. (2008) <doi:10.1111/j.1541-0420.2007.00923.x>, Datta, S. and Satten, G. (2005) <doi:10.1198/016214504000001583>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30423