Computation of volatility impulse response function for multivariate time series model using algorithm by Jin, Lin and Tamvakis (2012) <doi:10.1016/j.eneco.2012.03.003>.
COPA is a method to find genes that undergo recurrent fusion in a given cancer type by finding pairs of genes that have mutually exclusive outlier profiles.
Useful functions to visualize single cell and spatial data. It supports visualizing Seurat', SingleCellExperiment and SpatialExperiment objects through grammar of graphics syntax implemented in ggplot2'.
Independent Surrogate Variable Analysis is an algorithm for feature selection in the presence of potential confounding factors (see Teschendorff AE et al 2011, <doi: 10.1093/bioinformatics/btr171>).
This package implements both real-valued branches of the Lambert-W function (Corless et al, 1996) <doi:10.1007/BF02124750> without the need for installing the entire GSL.
Provide nonparametric methods for mean regression model, modal regression and conditional density estimation in the presence/absence of measurement error. Bandwidth selection is also provided for each method.
Facilities for working with Atlantis box-geometry model (BGM) files. Atlantis is a deterministic, biogeochemical, whole-of-ecosystem model. Functions are provided to read from BGM files directly, preserving their internal topology, as well as helper functions to generate spatial data from these mesh forms. This functionality aims to simplify the creation and modification of box and geometry as well as the ability to integrate with other data sources.
This package uses non-parametric methods to detect rhythms in time series. It deals with outliers, missing values and is optimized for time series comprising 10-100 measurements. As it does not assume expect any distinct waveform it is optimal or detecting oscillating behavior (e.g. circadian or cell cycle) in e.g. genome- or proteome-wide biological measurements such as: micro arrays, proteome mass spectrometry, or metabolome measurements.
Efficient algorithms for generating ensembles of robust, sparse and diverse models via robust multi-model subset selection (RMSS). The robust ensembles are generated by minimizing the sum of the least trimmed square loss of the models in the ensembles under constraints for the size of the models and the sharing of the predictors. Tuning parameters for the robustness, sparsity and diversity of the robust ensemble are selected by cross-validation.
Computationally efficient method to estimate orthant probabilities of high-dimensional Gaussian vectors. Further implements a function to compute conservative estimates of excursion sets under Gaussian random field priors.
This package provides analytical methods for analyzing CRISPR screen data at different levels of gene expression. Multi-component normal mixture models and EM algorithms are used for modeling.
This package implements the Cross-contribution Compensating Multiple standard Normalization (CCMN) method described in Redestig et al. (2009) Analytical Chemistry <doi:10.1021/ac901143w> and other normalization algorithms.
This package provides functions to check whether a vector of p-values respects the assumptions of FDR (false discovery rate) control procedures and to compute adjusted p-values.
Implementation of automatically computing derivatives of functions (see Mailund Thomas (2017) <doi:10.1007/978-1-4842-2881-4>). Moreover, calculating gradients, Hessian and Jacobian matrices is possible.
Fixation and saccade detection in eye movement recordings. This package implements a dispersion-based algorithm (I-DT) proposed by Salvucci & Goldberg (2000) which detects fixation duration and position.
Real capture frequencies will be fitted to various distributions which provide the basis of estimating population sizes, their standard error, and symmetric as well as asymmetric confidence intervalls.
Enables calculation of image textures (Haralick 1973) <doi:10.1109/TSMC.1973.4309314> from grey-level co-occurrence matrices (GLCMs). Supports processing images that cannot fit in memory.
Providing various equations to calculate Gini coefficients. The methods used in this package can be referenced from Brown MC (1994) <doi: 10.1016/0277-9536(94)90189-9>.
Perform gene set enrichment analyses using the Gene set Ordinal Association Test (GOAT) algorithm and visualize your results. Koopmans, F. (2024) <doi:10.1038/s42003-024-06454-5>.
An efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of a flexible nonparametric expectile regression estimator constructed in a reproducing kernel Hilbert space.
Fits semi-confirmatory structural equation modeling (SEM) via penalized likelihood (PL) or penalized least squares (PLS). For details, please see Huang (2020) <doi:10.18637/jss.v093.i07>.
Providing a method for Local Discrimination via Latent Class Models. The approach is described in <https://www.r-project.org/conferences/useR-2009/abstracts/pdf/Bucker.pdf>.
This package provides functions for simulating missing morphometric data randomly, with taxonomic bias and with anatomical bias. LOST also includes functions for estimating linear and geometric morphometric data.
Model evaluation based on a modified version of the recursive feature elimination algorithm. This package is designed to determine the optimal model(s) by leveraging all available features.