_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bsvarsigns 2.0
Propagated dependencies: r-rcppprogress@0.4.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-r6@2.6.1 r-bsvars@3.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bsvars.org/bsvarSIGNs/
Licenses: GPL 3+
Build system: r
Synopsis: Bayesian SVARs with Sign, Zero, and Narrative Restrictions
Description:

This package implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramà rez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramà rez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolà n-Dà az and Rubio-Ramà rez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by Wang & Woźniak (2024) <doi:10.48550/arXiv.2501.16711>. The bsvarSIGNs package is aligned regarding objects, workflows, and code structure with the R package bsvars by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.

r-descstatsr 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-moments@0.14.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=descstatsr
Licenses: GPL 2
Build system: r
Synopsis: Descriptive Univariate Statistics
Description:

It generates summary statistics on the input dataset using different descriptive univariate statistical measures on entire data or at a group level. Though there are other packages which does similar job but each of these are deficient in one form or other, in the measures generated, in treating numeric, character and date variables alike, no functionality to view these measures on a group level or the way the output is represented. Given the foremost role of the descriptive statistics in any of the exploratory data analysis or solution development, there is a need for a more constructive, structured and refined version over these packages. This is the idea behind the package and it brings together all the required descriptive measures to give an initial understanding of the data quality, distribution in a faster,easier and elaborative way.The function brings an additional capability to be able to generate these statistical measures on the entire dataset or at a group level. It calculates measures of central tendency (mean, median), distribution (count, proportion), dispersion (min, max, quantile, standard deviation, variance) and shape (skewness, kurtosis). Addition to these measures, it provides information on the data type, count on no. of rows, unique entries and percentage of missing entries. More importantly the measures are generated based on the data types as required by them,rather than applying numerical measures on character and data variables and vice versa. Output as a dataframe object gives a very neat representation, which often is useful when working with a large number of columns. It can easily be exported as csv and analyzed further or presented as a summary report for the data.

r-gseamining 1.20.0
Propagated dependencies: r-tidytext@0.4.3 r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-gridextra@2.3 r-ggwordcloud@0.6.2 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-dendextend@1.19.1
Channel: guix-bioc
Location: guix-bioc/packages/g.scm (guix-bioc packages g)
Home page: https://bioconductor.org/packages/GSEAmining
Licenses: GPL 3 FSDG-compatible
Build system: r
Synopsis: Make Biological Sense of Gene Set Enrichment Analysis Outputs
Description:

Gene Set Enrichment Analysis is a very powerful and interesting computational method that allows an easy correlation between differential expressed genes and biological processes. Unfortunately, although it was designed to help researchers to interpret gene expression data it can generate huge amounts of results whose biological meaning can be difficult to interpret. Many available tools rely on the hierarchically structured Gene Ontology (GO) classification to reduce reundandcy in the results. However, due to the popularity of GSEA many more gene set collections, such as those in the Molecular Signatures Database are emerging. Since these collections are not organized as those in GO, their usage for GSEA do not always give a straightforward answer or, in other words, getting all the meaninful information can be challenging with the currently available tools. For these reasons, GSEAmining was born to be an easy tool to create reproducible reports to help researchers make biological sense of GSEA outputs. Given the results of GSEA, GSEAmining clusters the different gene sets collections based on the presence of the same genes in the leadind edge (core) subset. Leading edge subsets are those genes that contribute most to the enrichment score of each collection of genes or gene sets. For this reason, gene sets that participate in similar biological processes should share genes in common and in turn cluster together. After that, GSEAmining is able to identify and represent for each cluster: - The most enriched terms in the names of gene sets (as wordclouds) - The most enriched genes in the leading edge subsets (as bar plots). In each case, positive and negative enrichments are shown in different colors so it is easy to distinguish biological processes or genes that may be of interest in that particular study.

r-gdalraster 2.4.0
Dependencies: zlib@1.3.1 pcre2@10.42 openssl@3.0.8 openssh@10.2p1 gdal@3.8.2 curl@8.6.0
Propagated dependencies: r-yyjsonr@0.1.21 r-xml2@1.5.0 r-wk@0.9.4 r-rcppint64@0.0.5 r-rcpp@1.1.0 r-nanoarrow@0.7.0-1 r-bit64@4.6.0-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://firelab.github.io/gdalraster/
Licenses: Expat
Build system: r
Synopsis: Bindings to 'GDAL'
Description:

API bindings to the Geospatial Data Abstraction Library ('GDAL', <https://gdal.org>). Implements the GDAL Raster and Vector Data Models. Bindings are implemented with Rcpp modules. Exposed C++ classes and stand-alone functions wrap much of the GDAL API and provide additional functionality. Calling signatures resemble the native C, C++ and Python APIs provided by the GDAL project. Class GDALRaster encapsulates a GDALDataset and its raster band objects. Class GDALVector encapsulates an OGRLayer and the GDALDataset that contains it. Initial bindings are provided to the unified gdal command line interface added in GDAL 3.11. C++ stand-alone functions provide bindings to most GDAL "traditional" raster and vector utilities, including OGR facilities for vector geoprocessing, several algorithms, as well as the Geometry API ('GEOS via GDAL headers), the Spatial Reference Systems API, and methods for coordinate transformation. Bindings to the Virtual Systems Interface ('VSI') API implement standard file system operations abstracted for URLs, cloud storage services, Zip'/'GZip'/'7z'/'RAR', in-memory files, as well as regular local file systems. This provides a single interface for operating on file system objects that works the same for any storage backend. A custom raster calculator evaluates a user-defined R expression on a layer or stack of layers, with pixel x/y available as variables in the expression. Raster combine() identifies and counts unique pixel combinations across multiple input layers, with optional raster output of the pixel-level combination IDs. Basic plotting capability is provided for raster and vector display. gdalraster leans toward minimalism and the use of simple, lightweight objects for holding raw data. Currently, only minimal S3 class interfaces have been implemented for selected R objects that contain spatial data. gdalraster may be useful in applications that need scalable, low-level I/O, or prefer a direct GDAL API.

r-pbtdesigns 1.0.0
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PBtDesigns
Licenses: GPL 2+
Build system: r
Synopsis: Partially Balanced t-Designs (PBtDesigns)
Description:

The t-designs represent a generalized class of balanced incomplete block designs in which the number of blocks in which any t-tuple of treatments (t >= 2) occur together is a constant. When the focus of an experiment lies in grading and selecting treatment subgroups, t-designs would be preferred over the conventional ones, as they have the additional advantage of t-tuple balance. t-designs can be advantageously used in identifying the best crop-livestock combination for a particular location in Integrated Farming Systems that will help in generating maximum profit. But as the number of components increases, the number of possible t-component combinations will also increase. Most often, combinations derived from specific components are only practically feasible, for example, in a specific locality, farmers may not be interested in keeping a pig or goat and hence combinations involving these may not be of any use in that locality. In such situations partially balanced t-designs with few selected combinations appearing in a constant number of blocks (while others not at all appearing) may be useful (Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2021)<doi:10.1080/03610918.2021.2008436>). Further, every location may not have the resources to form equally sized homogeneous blocks. Partially balanced t-designs with unequal block sizes (Damaraju Raghavarao & Bei Zhou (1998)<doi:10.1080/03610929808832657>. Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2022)." Partially Balanced t-designs with unequal block sizes") prove to be more suitable for such situations.This package generates three series of partially balanced t-designs namely Series 1, Series 2 and Series 3. Series 1 and Series 2 are designs having equal block sizes and with treatment structures 4(t + 1) and a prime number, respectively. Series 3 consists of designs with unequal block sizes and with treatment structure n(n-1)/2. This package is based on the function named PBtD() for generating partially balanced t-designs along with their parameters, information matrices, average variance factors and canonical efficiency factors.

r-simcorrmix 0.1.1
Propagated dependencies: r-vgam@1.1-13 r-triangle@1.0 r-simmulticorrdata@0.2.2 r-nleqslv@3.3.5 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-mass@7.3-65 r-ggplot2@4.0.1 r-bb@2019.10-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/AFialkowski/SimCorrMix
Licenses: GPL 2
Build system: r
Synopsis: Simulation of Correlated Data with Multiple Variable Types Including Continuous and Count Mixture Distributions
Description:

Generate continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count (regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix, or one continuous variable with a mixture distribution. This package can be used to simulate data sets that mimic real-world clinical or genetic data sets (i.e., plasmodes, as in Vaughan et al., 2009 <DOI:10.1016/j.csda.2008.02.032>). The methods extend those found in the SimMultiCorrData R package. Standard normal variables with an imposed intermediate correlation matrix are transformed to generate the desired distributions. Continuous variables are simulated using either Fleishman (1978)'s third order <DOI:10.1007/BF02293811> or Headrick (2002)'s fifth order <DOI:10.1016/S0167-9473(02)00072-5> polynomial transformation method (the power method transformation, PMT). Non-mixture distributions require the user to specify mean, variance, skewness, standardized kurtosis, and standardized fifth and sixth cumulants. Mixture distributions require these inputs for the component distributions plus the mixing probabilities. Simulation occurs at the component level for continuous mixture distributions. The target correlation matrix is specified in terms of correlations with components of continuous mixture variables. These components are transformed into the desired mixture variables using random multinomial variables based on the mixing probabilities. However, the package provides functions to approximate expected correlations with continuous mixture variables given target correlations with the components. Binary and ordinal variables are simulated using a modification of ordsample() in package GenOrd'. Count variables are simulated using the inverse CDF method. There are two simulation pathways which calculate intermediate correlations involving count variables differently. Correlation Method 1 adapts Yahav and Shmueli's 2012 method <DOI:10.1002/asmb.901> and performs best with large count variable means and positive correlations or small means and negative correlations. Correlation Method 2 adapts Barbiero and Ferrari's 2015 modification of the GenOrd package <DOI:10.1002/asmb.2072> and performs best under the opposite scenarios. The optional error loop may be used to improve the accuracy of the final correlation matrix. The package also contains functions to calculate the standardized cumulants of continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries, and summarize and plot simulated variables.

r-micromapst 3.1.1
Propagated dependencies: r-writexl@1.5.4 r-stringr@1.6.0 r-spdep@1.4-1 r-sf@1.0-23 r-rmapshaper@0.5.0 r-readxl@1.4.5 r-rcolorbrewer@1.1-3 r-labeling@0.4.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=micromapST
Licenses: GPL 2+
Build system: r
Synopsis: Linked Micromap Plots for U. S. and Other Geographic Areas
Description:

This package provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the micromapST function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package with the BuildBorderGroup function. In April of 2022, it was announced that maptools', rgdal', and rgeos R packages would be retired in middle to end of 2023 and removed from the CRAN libraries. The BuildBorderGroup function was dependent on these packages. micromapST functions were not impacted by the retired R packages. Upgrading of BuildBorderGroup function was completed and released with version 3.0.0 on August 10, 2023 using the sf R package. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.

r-greymodels 2.0.1
Propagated dependencies: r-shinywidgets@0.9.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-scales@1.4.0 r-readxl@1.4.5 r-plotly@4.11.0 r-particle-swarm-optimisation@1.0.1 r-metrics@0.1.4 r-ggplot2@4.0.1 r-expm@1.0-0 r-dplyr@1.1.4 r-cmna@1.0.5
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/havishaJ/Greymodels
Licenses: GPL 3
Build system: r
Synopsis: Shiny App for Grey Forecasting Model
Description:

The Greymodels Shiny app is an interactive interface for statistical modelling and forecasting using grey-based models. It covers several state-of-the-art univariate and multivariate grey models. A user friendly interface allows users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within user chosen confidence intervals. Chang, C. (2019) <doi:10.24818/18423264/53.1.19.11>, Li, K., Zhang, T. (2019) <doi:10.1007/s12667-019-00344-0>, Ou, S. (2012) <doi:10.1016/j.compag.2012.03.007>, Li, S., Zhou, M., Meng, W., Zhou, W. (2019) <doi:10.1080/23307706.2019.1666310>, Xie, N., Liu, S. (2009) <doi:10.1016/j.apm.2008.01.011>, Shao, Y., Su, H. (2012) <doi:10.1016/j.aasri.2012.06.003>, Xie, N., Liu, S., Yang, Y., Yuan, C. (2013) <doi:10.1016/j.apm.2012.10.037>, Li, S., Miao, Y., Li, G., Ikram, M. (2020) <doi:10.1016/j.matcom.2019.12.020>, Che, X., Luo, Y., He, Z. (2013) <doi:10.4028/www.scientific.net/AMM.364.207>, Zhu, J., Xu, Y., Leng, H., Tang, H., Gong, H., Zhang, Z. (2016) <doi:10.1109/appeec.2016.7779929>, Luo, Y., Liao, D. (2012) <doi:10.4028/www.scientific.net/AMR.507.265>, Bilgil, H. (2020) <doi:10.3934/math.2021091>, Li, D., Chang, C., Chen, W., Chen, C. (2011) <doi:10.1016/j.apm.2011.04.006>, Chen, C. (2008) <doi:10.1016/j.chaos.2006.08.024>, Zhou, W., Pei, L. (2020) <doi:10.1007/s00500-019-04248-0>, Xiao, X., Duan, H. (2020) <doi:10.1016/j.engappai.2019.103350>, Xu, N., Dang, Y. (2015) <doi:10.1155/2015/606707>, Chen, P., Yu, H.(2014) <doi:10.1155/2014/242809>, Zeng, B., Li, S., Meng, W., Zhang, D. (2019) <doi:10.1371/journal.pone.0221333>, Liu, L., Wu, L. (2021) <doi:10.1016/j.apm.2020.08.080>, Hu, Y. (2020) <doi:10.1007/s00500-020-04765-3>, Zhou, P., Ang, B., Poh, K. (2006) <doi:10.1016/j.energy.2005.12.002>, Cheng, M., Li, J., Liu, Y., Liu, B. (2020) <doi:10.3390/su12020698>, Wang, H., Wang, P., Senel, M., Li, T. (2019) <doi:10.1155/2019/9049815>, Ding, S., Li, R. (2020) <doi:10.1155/2020/4564653>, Zeng, B., Li, C. (2018) <doi:10.1016/j.cie.2018.02.042>, Xie, N., Liu, S. (2015) <doi:10.1109/JSEE.2015.00013>, Zeng, X., Yan, S., He, F., Shi, Y. (2019) <doi:10.1016/j.apm.2019.11.032>.

r-arthistory 0.1.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/saralemus7/arthistory
Licenses: Expat
Build system: r
Synopsis: Art History Textbook Data
Description:

Data from Gardner and Janson art history textbooks about both the artists featured in these books as well as their works. See Helen Gardner ("Art through the ages; an introduction to its history and significance," 1926, <https://find.library.duke.edu/catalog/DUKE000104481>. Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1980, ISBN: 0155037587). Fred S. Kleiner ("Gardnerâ s art through the ages: a global history," 2020, ISBN: 9781337630702). Horst de la Croix and Richard G. Tansey ("Gardner's art through the ages," 1986, ISBN: 0155037633). Helen Gardner ("Art through the ages; an introduction to its history and significance," 1936, <https://find.library.duke.edu/catalog/DUKE001199463>). Helen Gardner ("Art through the ages," 1948, <https://find.library.duke.edu/catalog/DUKE001199466>). Helen Gardner, revised under the editorship of Sumner M. Crosby ("Art through the ages," 1959, <https://find.library.duke.edu/catalog/DUKE001199469>). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1975, ISBN: 0155037560). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2013, ISBN: 9780495915423. Fred S. Kleiner, Christin J. Mamiya, Richard G. Tansey ("Gardnerâ s art through the ages," 2001, ISBN: 0155083155). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2016, ISBN: 9781285837840). Fred S. Kleiner, Christin J. Mamiya ("Gardnerâ s art through the ages," 2005, ISBN: 0534640958). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1970, ISBN: 0155037528). Helen Gardner, Richard G. Tansey, Fred S. Kleiner ("Gardnerâ s Art through the ages," 1996, ISBN: 0155011413). Helen Gardner, Horst de la Croix, Richard G. Tansey, Diane Kirkpatrick ("Gardnerâ s Art through the ages," 1991, ISBN: 0155037692). Helen Gardner, Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2009, ISBN: 9780495093077). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2007, ISBN: 0131934554). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2011, ISBN: 9780205685172). H. W. Janson, Anthony F. Janson ("History of Art," 2001, ISBN: 0810934469). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1986, ISBN: 013389388). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1977, ISBN: 0810910527). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1969, <https://find.library.duke.edu/catalog/DUKE000005734>). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1963, <https://find.library.duke.edu/catalog/DUKE001521852>). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1991, ISBN: 0810934019). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1995, ISBN: 0810934213).

r-rnbeads-rn5 1.42.0
Propagated dependencies: r-genomicranges@1.62.0
Channel: guix-bioc
Location: guix-bioc/packages/r.scm (guix-bioc packages r)
Home page: https://bioconductor.org/packages/RnBeads.rn5
Licenses: GPL 3
Build system: r
Synopsis: RnBeads.rn5
Description:

Automatically generated RnBeads annotation package for the assembly rn5.

r-rnaseqpower 1.50.0
Channel: guix-bioc
Location: guix-bioc/packages/r.scm (guix-bioc packages r)
Home page: https://bioconductor.org/packages/RNASeqPower
Licenses: FSDG-compatible
Build system: r
Synopsis: Sample size for RNAseq studies
Description:

RNA-seq, sample size.

r-rmkdiscrete 0.2
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=RMKdiscrete
Licenses: GPL 2+
Build system: r
Synopsis: Sundry Discrete Probability Distributions
Description:

Sundry discrete probability distributions and helper functions.

ruby-redcloth 4.3.2
Channel: guix
Location: gnu/packages/ruby-xyz.scm (gnu packages ruby-xyz)
Home page: http://redcloth.org
Licenses: Expat
Build system: ruby
Synopsis: Textile markup language parser for Ruby
Description:

RedCloth is a Ruby parser for the Textile markup language.

r-readstata13 0.11.0
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/sjewo/readstata13
Licenses: GPL 2 FSDG-compatible
Build system: r
Synopsis: Import 'Stata' Data Files
Description:

Function to read and write the Stata file format.

r-roxyglobals 1.0.0
Propagated dependencies: r-roxygen2@7.3.3 r-desc@1.4.3 r-codetools@0.2-20 r-brio@1.1.5
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/anthonynorth/roxyglobals
Licenses: Expat
Build system: r
Synopsis: 'Roxygen2' Global Variable Declarations
Description:

Generate utils::globalVariables() from roxygen2 @global and @autoglobal tags.

rust-rust-ini 0.20.0
Channel: glue
Location: glue/packages/mcfly.scm (glue packages mcfly)
Home page: https://github.com/zonyitoo/rust-ini
Licenses: Expat
Build system:
Synopsis: An Ini configuration file parsing library in Rust
Description:

This package provides An Ini configuration file parsing library in Rust.

r-rnbeads-mm9 1.42.0
Propagated dependencies: r-genomicranges@1.62.0
Channel: guix-bioc
Location: guix-bioc/packages/r.scm (guix-bioc packages r)
Home page: https://bioconductor.org/packages/RnBeads.mm9
Licenses: GPL 3
Build system: r
Synopsis: RnBeads.mm9
Description:

Automatically generated RnBeads annotation package for the assembly mm9.

r-pd-rat230-2 3.12.0
Propagated dependencies: r-s4vectors@0.48.0 r-rsqlite@2.4.4 r-oligoclasses@1.72.0 r-oligo@1.74.0 r-iranges@2.44.0 r-dbi@1.2.3 r-biostrings@2.78.0
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://bioconductor.org/packages/pd.rat230.2
Licenses: Artistic License 2.0
Build system: r
Synopsis: Platform Design Info for The Manufacturer's Name Rat230_2
Description:

Platform Design Info for The Manufacturer's Name Rat230_2.

ruby-rchardet 1.8.0
Channel: gn-bioinformatics
Location: gn/packages/ruby.scm (gn packages ruby)
Home page: https://github.com/jmhodges/rchardet
Licenses: LGPL 2.1+
Build system: ruby
Synopsis: Character encoding auto-detection in Ruby. As smart as your browser. Open source.
Description:

Character encoding auto-detection in Ruby. As smart as your browser. Open source.

ruby-lz4-ruby 0.3.3
Channel: gn-bioinformatics
Location: gn/packages/ruby.scm (gn packages ruby)
Home page: https://github.com/komiya-atsushi/lz4-ruby
Licenses: Expat
Build system: ruby
Synopsis: Ruby bindings for LZ4. LZ4 is a very fast lossless compression algorithm.
Description:

Ruby bindings for LZ4. LZ4 is a very fast lossless compression algorithm.

r-reporttools 1.1.4
Propagated dependencies: r-xtable@1.8-4
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: http://www.kasparrufibach.ch
Licenses: GPL 2+
Build system: r
Synopsis: Generate "LaTeX"" Tables of Descriptive Statistics
Description:

These functions are especially helpful when writing reports of data analysis using "Sweave".

r-rattoxfxcdf 2.18.0
Propagated dependencies: r-annotationdbi@1.72.0
Channel: guix-bioc
Location: guix-bioc/packages/r.scm (guix-bioc packages r)
Home page: https://bioconductor.org/packages/rattoxfxcdf
Licenses: LGPL 2.0+
Build system: r
Synopsis: rattoxfxcdf
Description:

This package provides a package containing an environment representing the RatToxFX.cdf file.

r-rpostgresql 0.7-8
Dependencies: postgresql@14.13
Propagated dependencies: r-dbi@1.2.3
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/tomoakin/RPostgreSQL
Licenses: GPL 2
Build system: r
Synopsis: R interface to the PostgreSQL database system
Description:

This package provides a Database Interface (DBI) compliant driver for R to access PostgreSQL database systems.

ruby-railties 7.2.2.1
Propagated dependencies: ruby-actionpack@7.2.2.1 ruby-activesupport@7.2.2.1 ruby-method-source@1.0.0 ruby-rackup@1.0.1 ruby-rake@13.3.0 ruby-thor@1.2.2 ruby-webrick@1.8.1 ruby-zeitwerk@2.7.1
Channel: guix
Location: gnu/packages/rails.scm (gnu packages rails)
Home page: https://rubyonrails.org
Licenses: Expat
Build system: ruby
Synopsis: Rails internals, including application bootup and generators
Description:

railties provides the core Rails internals including handling application bootup, plugins, generators, and Rake tasks.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
Total results: 30580