Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Developed to deal with multi-locus genotype data, this package is especially designed for those panel which include different type of markers. Basic genetic parameters like allele frequency, genotype frequency, heterozygosity and Hardy-Weinberg test of mixed genetic data can be obtained. In addition, a new test for mutual independence which is compatible for mixed genetic data is developed in this package.
This package provides a tool to simulate salmon metapopulations and apply financial portfolio optimization concepts. The package accompanies the paper Anderson et al. (2015) <doi:10.1101/2022.03.24.485545>.
Multivariate joint models of longitudinal and time-to-event data based on functional principal components implemented with bamlss'. Implementation for Volkmann, Umlauf, Greven (2023) <arXiv:2311.06409>.
The inference in multi-state models is traditionally performed under a Markov assumption that claims that past and future of the process are independent given the present state. In this package, we consider tests of the Markov assumption that are applicable to general multi-state models. Three approaches using existing methodology are considered: a simple method based on including covariates depending on the history in Cox models for the transition intensities; methods based on measuring the discrepancy of the non-Markov estimators of the transition probabilities to the Markov Aalen-Johansen estimators; and, finally, methods that were developed by considering summaries from families of log-rank statistics where patients are grouped by the state occupied of the process at a particular time point (see Soutinho G, Meira-Machado L (2021) <doi:10.1007/s00180-021-01139-7> and Titman AC, Putter H (2020) <doi:10.1093/biostatistics/kxaa030>).
This package provides a graphical user interface to apply an advanced method optimization algorithm to various sampling and analysis instruments. This includes generating experimental designs, uploading and viewing data, and performing various analyses to determine the optimal method. Details of the techniques used in this package are published in Gamble, Granger, & Mannion (2024) <doi:10.1021/acs.analchem.3c05763>.
This package provides methods for performing genetic risk prediction from genotype data. You can use it to perform risk prediction for individuals, or for families with missing data.
This package implements methods for estimating generalized estimating equations (GEE) with advanced options for flexible modeling and handling missing data. This package provides tools to fit and analyze GEE models for longitudinal data, allowing users to address missingness using a variety of imputation techniques. It supports both univariate and multivariate modeling, visualization of missing data patterns, and facilitates the transformation of data for efficient statistical analysis. Designed for researchers working with complex datasets, it ensures robust estimation and inference in longitudinal and clustered data settings.
This package provides a function to perform bias diagnostics on linear mixed models fitted with lmer() from the lme4 package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021) <doi:10.1016/j.jspi.2020.06.004>. Karl and Zimmerman (2020) <doi:10.17632/tmynggddfm.1> provide R code for implementing the test using mvglmmRank output. Development of this package was assisted by GPT o1-preview for code structure and documentation.
This package provides functions and classes to store, manipulate and summarise Monte Carlo Markov Chain (MCMC) samples. For more information see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.
Multiscale Graph Correlation (MGC) is a framework developed by Vogelstein et al. (2019) <DOI:10.7554/eLife.41690> that extends global correlation procedures to be multiscale; consequently, MGC tests typically require far fewer samples than existing methods for a wide variety of dependence structures and dimensionalities, while maintaining computational efficiency. Moreover, MGC provides a simple and elegant multiscale characterization of the potentially complex latent geometry underlying the relationship.
Access to different Spanish meteorological stations data services and APIs (AEMET, SMC, MG, Meteoclimatic...).
This package provides tools of Bayesian analysis framework using the method suggested by Berger (1985) <doi:10.1007/978-1-4757-4286-2> for multivariate normal (MVN) distribution and multivariate normal mixture (MixMVN) distribution: a) calculating Bayesian posteriori of (Mix)MVN distribution; b) generating random vectors of (Mix)MVN distribution; c) Markov chain Monte Carlo (MCMC) for (Mix)MVN distribution.
Provide simple functions to (i) compute a class of multi-functionality measures for a single ecosystem for given function weights, (ii) decompose gamma multi-functionality for pairs of ecosystems and K ecosystems (K can be greater than 2) into a within-ecosystem component (alpha multi-functionality) and an among-ecosystem component (beta multi-functionality). In each case, the correlation between functions can be corrected for. Based on biodiversity and ecosystem function data, this software also facilitates graphics for assessing biodiversity-ecosystem functioning relationships across scales.
Mixed variable optimization for non-linear functions. Can optimize function whose inputs are a combination of continuous, ordered, and unordered variables.
Multi-Fidelity emulator for data from computer simulations of the same underlying system but at different input locations and fidelity level, where both the input locations and fidelity level can be continuous. Active Learning can be performed with an implementation of the Integrated Mean Square Prediction Error (IMSPE) criterion developed by Boutelet and Sung (2025, <doi:10.48550/arXiv.2503.23158>).
Metadynamics is a state of the art biomolecular simulation technique. Plumed Tribello, G.A. et al. (2014) <doi:10.1016/j.cpc.2013.09.018> program makes it possible to perform metadynamics using various simulation codes. The results of metadynamics done in Plumed can be analyzed by metadynminer'. The package metadynminer reads 1D and 2D metadynamics hills files from Plumed package. As an addendum, metadynaminer3d is used to visualize 3D hills. It uses a fast algorithm by Hosek, P. and Spiwok, V. (2016) <doi:10.1016/j.cpc.2015.08.037> to calculate a free energy surface from hills. Minima can be located and plotted on the free energy surface. Free energy surfaces and minima can be plotted to produce publication quality images.
Conduct multi-locus genome-wide association study under the framework of multi-locus random-SNP-effect mixed linear model (mrMLM). First, each marker on the genome is scanned. Bonferroni correction is replaced by a less stringent selection criterion for significant test. Then, all the markers that are potentially associated with the trait are included in a multi-locus genetic model, their effects are estimated by empirical Bayes and all the nonzero effects were further identified by likelihood ratio test for true QTL. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2018) <doi:10.1093/bib/bbw145>.
An aggressive dimensionality reduction and network estimation technique for a high-dimensional Gaussian graphical model (GGM). Please refer to: Efficient Dimensionality Reduction for High-Dimensional Network Estimation, Safiye Celik, Benjamin A. Logsdon, Su-In Lee, Proceedings of The 31st International Conference on Machine Learning, 2014, p. 1953--1961.
This package provides a tool for computing probabilities and other quantities that are relevant in selecting performance criteria for discrete trial training. The main function, miebl(), computes Bayesian and frequentist probabilities and bounds for each of n possible performance criterion choices when attempting to determine a student's true mastery level by counting their number of successful attempts at displaying learning among n trials. The reporting function miebl_re() takes output from miebl() and prepares it into a brief report for a specific criterion. miebl_cp() combines 2 to 5 distributions of true mastery level given performance criterion in one plot for comparison. Ramos (2025) <doi:10.1007/s40617-025-01058-9>.
Frequently one needs a convenient way to build and tune several models in one go.The goal is to provide a number of machine learning convenience functions. It provides the ability to build, tune and obtain predictions of several models in one function. The models are built using functions from caret with easier to read syntax. Kuhn(2014) <doi:10.48550/arXiv.1405.6974>.
The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models, including partially deterministic models. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Fitting available via Expectation-Maximization (EM), BFGS (using optim), and TMB (using the marssTMB companion package). Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, model selection criteria including bootstrap AICb, confidences intervals via the Hessian approximation or bootstrapping, and all conditional residual types. See the user guide for examples of dynamic factor analysis, dynamic linear models, outlier and shock detection, and multivariate AR-p models. Online workshops (lectures, eBook, and computer labs) at <https://atsa-es.github.io/>.
Utility functions for mutational signature analysis as described in Alexandrov, L. B. (2020) <doi:10.1038/s41586-020-1943-3>. This package provides two groups of functions. One is for dealing with mutational signature "exposures" (i.e. the counts of mutations in a sample that are due to each mutational signature). The other group of functions is for matching or comparing sets of mutational signatures. mSigTools stands for mutational Signature analysis Tools.
Create an interactive table of descriptive statistics in HTML. This table is typically used for exploratory analysis in a clinical study (referred to as Table 1').
Perform correlation and linear regression test among the numeric fields in a data.frame automatically and make plots using pairs or lattice::parallelplot.