Volleyball match statistics of the German volleyball first division league (seasons 2013/2014 to 2018/2019). The data has been collected from the official volleyball first division homepage (<www.volleyball-bundesliga.de>) and contains information on teams, staff, sets, matches, and player-in-match statistics (extracted automatically from the official match reports).
This package finds and filters artificial chimeric reads specifically generated in next-generation sequencing (NGS) process of formalin-fixed paraffin-embedded (FFPE) tissues. These artificial chimeric reads can lead to a large number of false positive structural variation (SV) calls. The required input is an indexed BAM file of a FFPE sample.
Kataegis refers to the occurrence of regional hypermutation and is a phenomenon observed in a wide range of malignancies. Using changepoint detection katdetectr aims to identify putative kataegis foci from common data-formats housing genomic variants. Katdetectr has shown to be a robust package for the detection, characterization and visualization of kataegis.
pairedGSEA
makes it simple to run a paired Differential Gene Expression (DGE) and Differencital Gene Splicing (DGS) analysis. The package allows you to store intermediate results for further investiation, if desired. pairedGSEA
comes with a wrapper function for running an Over-Representation Analysis (ORA) and functionalities for plotting the results.
This package offers a set of functions for extending dendrogram
objects in R, letting you visualize and compare trees of hierarchical clusterings. You can adjust a tree's graphical parameters (the color, size, type, etc of its branches, nodes and labels) and visually and statistically compare different dendrograms to one another.
This package provides WHO 2007 References for School-age Children and Adolescents (5 to 19 years) (z-scores) with confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs. More information on the methods is available online: <https://www.who.int/tools/growth-reference-data-for-5to19-years>.
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.
This package implements the framework introduced in Di Francesco and Mellace (2025) <doi:10.48550/arXiv.2502.11691>
, shifting the focus to well-defined and interpretable estimands that quantify how treatment affects the probability distribution over outcome categories. It supports selection-on-observables, instrumental variables, regression discontinuity, and difference-in-differences designs.
Allows the user to implement easily canvas elements within a shiny app or an RMarkdown document. The user can create shapes, images and text elements within the canvas which can also be used as a drawing tool for taking notes. The package relies on the fabricjs JavaScript
library. See <http://fabricjs.com/>.
Data from various catalogs of astrophysical gamma-ray sources detected by NASA's Large Area Telescope (The Astrophysical Journal, 697, 1071, 2009 June 1), on board the Fermi gamma-ray satellite. More information on Fermi and its data products is available from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc/).
This package implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. glmmfields uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.
This package implements the basic financial analysis functions similar to (but not identical to) what is available in most spreadsheet software. This includes finding the IRR and NPV of regularly spaced cash flows and annuities. Bond pricing and YTM calculations are included. In addition, Black Scholes option pricing and Greeks are also provided.
The goal of MRMCbinary is to compare the performance of diagnostic tests (i.e., sensitivity and specificity) for binary outcomes in multi-reader multi-case (MRMC) studies. It is based on conditional logistic regression and Cochranâ s Q test (or McNemarâ s
test when the number of modalities is equal to 2).
This package provides a nomogram can not be easily applied, because it is difficult to calculate the points or even the survival probability. The package, including a function of nomogramEx()
, is to extract the polynomial equations to calculate the points of each variable, and the survival probability corresponding to the total points.
This package provides a model library for nlmixr2'. The models include (and plan to include) pharmacokinetic, pharmacodynamic, and disease models used in pharmacometrics. Where applicable, references for each model are included in the meta-data for each individual model. The package also includes model composition and modification functions to make model updates easier.
It makes an objective Bayesian analysis of the spatial regression model using both the normal (NSR) and student-T (TSR) distributions. The functions provided give prior and posterior objective densities and allow default Bayesian estimation of the model regression parameters. Details can be found in Ordonez et al. (2020) <arXiv:2004.04341>
.
Utility functions for the handling, analysis and visualisation of data from portable emissions measurement systems ('PEMS') and other similar mobile activity monitoring devices. The package includes a dedicated pems data class that manages many of the quality control, unit handling and data archiving issues that can hinder efforts to standardise PEMS research.
This package provides functions to manipulate dates and count days for quantitative finance analysis. The quantdates package considers leap, holidays and business days for relevant calendars in a financial context to simplify quantitative finance calculations, consistent with International Swaps and Derivatives Association (ISDA) (2006) <https://www.isda.org/book/2006-isda-definitions/> regulations.
This package provides functions for constructing near-optimal generalized full matching. Generalized full matching is an extension of the original full matching method to situations with more intricate study designs. The package is made with large data sets in mind and derives matches more than an order of magnitude quicker than other methods.
Utilities to support spatial data manipulation, query, sampling and modelling in ecological applications. Functions include models for species population density, spatial smoothing, multivariate separability, point process model for creating pseudo- absences and sub-sampling, Quadrant-based sampling and analysis, auto-logistic modeling, sampling models, cluster optimization, statistical exploratory tools and raster-based metrics.
Builds regression trees and random forests for longitudinal or functional data using a spline projection method. Implements and extends the work of Yu and Lambert (1999) <doi:10.1080/10618600.1999.10474847>. This method allows trees and forests to be built while considering either level and shape or only shape of response trajectories.
An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA
was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
The Universal Protein Resource (UniProt
) is a comprehensive resource for protein sequence and annotation data. This package provides a collection of functions for retrieving, processing, and re-packaging UniProt
web services. The package makes use of UniProt's
modernized REST API and allows mapping of identifiers accross different databases.