This package provides tools to query the U.S. National Library of Medicine's Clinical Trials database. Functions are provided for a variety of techniques for searching the data using range queries, categorical filtering, and by searching for full-text keywords. Minimal graphical tools are also provided for interactively exploring the constructed data.
This package provides a comprehensive set of tools designed for optimizing likelihood within a tie-oriented (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) or an actor-oriented modelling framework (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>) in relational event networks. The package accommodates both frequentist and Bayesian approaches. The frequentist approaches that the package incorporates are the Maximum Likelihood Optimization (MLE) and the Gradient-based Optimization (GDADAMAX). The Bayesian methodologies included in the package are the Bayesian Sampling Importance Resampling (BSIR) and the Hamiltonian Monte Carlo (HMC). The flexibility of choosing between frequentist and Bayesian optimization approaches allows researchers to select the estimation approach which aligns the most with their analytical preferences.
The NCI-60 cancer cell line panel has been used over the course of several decades as an anti-cancer drug screen. This panel was developed as part of the Developmental Therapeutics Program (DTP, http://dtp.nci.nih.gov/) of the U.S. National Cancer Institute (NCI). Thousands of compounds have been tested on the NCI-60, which have been extensively characterized by many platforms for gene and protein expression, copy number, mutation, and others (Reinhold, et al., 2012). The purpose of the CellMiner
project (http://discover.nci.nih.gov/ cellminer) has been to integrate data from multiple platforms used to analyze the NCI-60 and to provide a powerful suite of tools for exploration of NCI-60 data.
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
This package provides tools to estimate soil organic carbon stocks and sequestration rates in blue carbon ecosystems. BlueCarbon
contains functions to estimate and correct for core compaction, estimate sample thickness, estimate organic carbon content from organic matter content, estimate organic carbon stocks and sequestration rates, and visualize the error of carbon stock extrapolation.
It is sometimes necessary to create documentation for all files in a directory. Doing so by hand can be very tedious. This task is made fast and reproducible using the functionality of documenter'. It aggregates all text files in a directory and its subdirectories into a single word document in a semi-automated fashion.
Implementation of a function which calculates the empirical excess mass for given \eqn\lambda and given maximal number of modes (excessm()
). Offering powerful plot features to visualize empirical excess mass (exmplot()
). This includes the possibility of drawing several plots (with different maximal number of modes / cut off values) in a single graph.
Padroniza endereços brasileiros a partir de diferentes critérios. Os métodos de padronização incluem apenas manipulações básicas de strings, não oferecendo suporte a correspondências probabilà sticas entre strings. (Standardizes brazilian addresses using different criteria. Standardization methods include only basic string manipulation, not supporting probabilistic matches between strings.).
Time-based joins to analyze sequence of events, both in memory and out of memory. after_join()
joins two tables of events, while funnel_start()
and funnel_step()
join events in the same table. With the type argument, you can switch between different funnel types, like first-first and last-firstafter.
Implementation of methods Extremum Surface Estimator (ESE) and Extremum Distance Estimator (EDE) to identify the inflection point of a curve . Christopoulos, DT (2014) <doi:10.48550/arXiv.1206.5478>
. Christopoulos, DT (2016) <https://veltech.edu.in/wp-content/uploads/2016/04/Paper-04-2016.pdf> . Christopoulos, DT (2016) <doi:10.2139/ssrn.3043076> .
This package provides a number of testthat tests that can be used to verify that tidy()
, glance()
and augment()
methods meet consistent specifications. This allows methods for the same generic to be spread across multiple packages, since all of those packages can make the same guarantees to users about returned objects.
Generation of multiple count, binary and ordinal variables simultaneously given the marginal characteristics and association structure. Throughout the package, the word Poisson is used to imply count data under the assumption of Poisson distribution. The details of the method are explained in Amatya, A. and Demirtas, H. (2015) <DOI:10.1080/00949655.2014.953534>.
Two protein complex-based group regression models (PCLasso and PCLasso2) for risk protein complex identification. PCLasso is a prognostic model that identifies risk protein complexes associated with survival. PCLasso2 is a classification model that identifies risk protein complexes associated with classes. For more information, see Wang and Liu (2021) <doi:10.1093/bib/bbab212>.
This package provides a helper function, to bulk read SQL code from separate files and load it into an R list, where the list elements contain the individual statements and queries as strings. This works by annotating the SQL code with a name comment, which also will be the name of the list element.
Load and export SomaScan
data via the Standard BioTools
, Inc. structured text file called an ADAT ('*.adat'). For file format see <https://github.com/SomaLogic/SomaLogic-Data/blob/main/README.md>
. The package also exports auxiliary functions for manipulating, wrangling, and extracting relevant information from an ADAT object once in memory.
Statistical exploration of textual corpora using several methods from French Textometrie (new name of Lexicometrie') and French Data Analysis schools. It includes methods for exploring irregularity of distribution of lexicon features across text sets or parts of texts (Specificity analysis); multi-dimensional exploration (Factorial analysis), etc. Those methods are used in the TXM software.
Utilizing the OpenAI
API as the back end (<https://platform.openai.com/docs/api-reference>), TheOpenAIR
offers R wrapper functions for the ChatGPT
endpoint and several high-level functions that enable the integration of ChatGPT
capabilities in diverse data-related tasks, such as data cleansing and automated analytics script generation.
Discordant is an R package that identifies pairs of features that correlate differently between phenotypic groups, with application to -omics data sets. Discordant uses a mixture model that “bins” molecular feature pairs based on their type of coexpression or coabbundance. Algorithm is explained further in "Differential Correlation for Sequencing Data"" (Siska et al. 2016).
Taking a set of sequence motifs as PWMs, test a set of sequences for over-representation of these motifs, as well as any positional features within the set of motifs. Enrichment analysis can be undertaken using multiple statistical approaches. The package also contains core functions to prepare data for analysis, and to visualise results.
scFeatures
constructs multi-view representations of single-cell and spatial data. scFeatures
is a tool that generates multi-view representations of single-cell and spatial data through the construction of a total of 17 feature types. These features can then be used for a variety of analyses using other software in Biocondutor.
This package provides an R interface to Illumina's BaseSpace cloud computing environment, enabling the fast development of data analysis and visualization tools. Besides providing an easy to use set of tools for manipulating the data from BaseSpace, it also facilitates the access to R's rich environment of statistical and data analysis tools.
spacefillr
enables generation of random and quasi-random space-filling sequences. It supports the following sequences: Halton, Sobol, Owen-scrambled Sobol, Owen-scrambled Sobol with errors distributed as blue noise, progressive jittered, progressive multi-jittered (PMJ), PMJ with blue noise, PMJ02, and PMJ02 with blue noise. The package also includes a C++ API.
This package provides utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models, this package implements features like standardization or bootstrapping of parameters and models, feature reduction (feature extraction and variable selection) as well as conversion between indices of effect size.
The algorithm provided in this package generates perfect sample for unimodal or multimodal posteriors. Read Once Coupling From The Past, with Metropolis-Multishift is used to generate a perfect sample for a given posterior density based on the two extreme starting paths, minimum and maximum of the most interest range of the posterior. It uses the monotone random operation of multishift coupler which allows to sandwich all of the state space in one point. It means both Markov Chains starting from the maximum and minimum will be coalesced. The generated sample is independent from the starting points. It is useful for mixture distributions too. The output of this function is a real value as an exact draw from the posterior distribution.