Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to perform sensitivity analysis on a model with multivariate output.
Collection of functions to compute within-study covariances for different effect sizes, data visualization, and single and multiple imputations for missing data. Effect sizes include correlation (r), mean difference (MD), standardized mean difference (SMD), log odds ratio (logOR), log risk ratio (logRR), and risk difference (RD).
This package provides a user-friendly tool for visualizing categorical or group movement.
Enables you to create accessible modal dialogs, with confidence and with minimal configuration.
This package provides a single function plotting Marradi's trees: a graphical representation of a numerical variable for comparing the variable mean and standard deviation across subgroups. See A. Marradi "L'analisi monovariata" (1993, ISBN: 9788820496876).
This package contains functions intended to facilitate the production of plant taxonomic monographs. The package includes functions to convert tables into taxonomic descriptions, lists of collectors, examined specimens, identification keys (dichotomous and interactive), and can generate a monograph skeleton. Additionally, wrapper functions to batch the production of phenology histograms and distributional and diversity maps are also available.
This package performs Monte Carlo hypothesis tests, allowing a couple of different sequential stopping boundaries. For example, a truncated sequential probability ratio test boundary (Fay, Kim and Hachey, 2007 <DOI:10.1198/106186007X257025>) and a boundary proposed by Besag and Clifford, 1991 <DOI:10.1093/biomet/78.2.301>. Gives valid p-values and confidence intervals on p-values.
This package provides a collection of methods for large scale single mediator hypothesis testing. The six included methods for testing the mediation effect are Sobel's test, Max P test, joint significance test under the composite null hypothesis, high dimensional mediation testing, divide-aggregate composite null test, and Sobel's test under the composite null hypothesis. Du et al (2023) <doi:10.1002/gepi.22510>.
This package provides a class for multi-companion matrices with methods for arithmetic and factorization. A method for generation of multi-companion matrices with prespecified spectral properties is provided, as well as some utilities for periodically correlated and multivariate time series models. See Boshnakov (2002) <doi:10.1016/S0024-3795(01)00475-X> and Boshnakov & Iqelan (2009) <doi:10.1111/j.1467-9892.2009.00617.x>.
This package contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).
This package provides weighted versions of several metrics and performance measures used in machine learning, including average unit deviances of the Bernoulli, Tweedie, Poisson, and Gamma distributions, see Jorgensen B. (1997, ISBN: 978-0412997112). The package also contains a weighted version of generalized R-squared, see e.g. Cohen, J. et al. (2002, ISBN: 978-0805822236). Furthermore, dplyr chains are supported.
Implemented are the one-sided and two-sided multiple-direction logrank test for two-sample right censored data. In addition to the statistics p-values are calculated: 1. For the one-sided testing problem one p-value based on a wild bootstrap approach is determined. 2. In the two-sided case one p-value based on a chi-squared approximation and a second p-values based on a permutation approach are calculated. Ditzhaus, M. and Friedrich, S. (2018) <arXiv:1807.05504>. Ditzhaus, M. and Pauly, M. (2018) <arXiv:1808.05627>.
This package provides methods for estimating and utilizing the multivariate generalized propensity score (mvGPS) for multiple continuous exposures described in Williams, J.R, and Crespi, C.M. (2020) <arxiv:2008.13767>. The methods allow estimation of a dose-response surface relating the joint distribution of multiple continuous exposure variables to an outcome. Weights are constructed assuming a multivariate normal density for the marginal and conditional distribution of exposures given a set of confounders. Confounders can be different for different exposure variables. The weights are designed to achieve balance across all exposure dimensions and can be used to estimate dose-response surfaces.
This package provides methods for extracting results from mixed-effect model objects fit with the lme4 package. Allows construction of prediction intervals efficiently from large scale linear and generalized linear mixed-effects models. This method draws from the simulation framework used in the Gelman and Hill (2007) textbook: Data Analysis Using Regression and Multilevel/Hierarchical Models.
The midasml package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the midasml approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
Interaction between a genetic variant (e.g., a single nucleotide polymorphism) and an environmental variable (e.g., physical activity) can have a shared effect on multiple phenotypes (e.g., blood lipids). We implement a two-step method to test for an overall interaction effect on multiple phenotypes. In first step, the method tests for an overall marginal genetic association between the genetic variant and the multivariate phenotype. The genetic variants which show an evidence of marginal overall genetic effect in the first step are prioritized while testing for an overall gene-environment interaction effect in the second step. Methodology is available from: A Majumdar, KS Burch, S Sankararaman, B Pasaniuc, WJ Gauderman, JS Witte (2020) <doi:10.1101/2020.07.06.190256>.
Sentiment analysis is a popular technique in text mining that attempts to determine the emotional state of some text. We provide a new implementation of a common method for computing sentiment, whereby words are scored as positive or negative according to a dictionary lookup. Then the sum of those scores is returned for the document. We use the Hu and Liu sentiment dictionary ('Hu and Liu', 2004) <doi:10.1145/1014052.1014073> for determining sentiment. The scoring function is vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.
This package provides methods and classes for adding m-activation ("multiplicative activation") layers to MLR or multivariate logistic regression models. M-activation layers created in this library detect and add input interaction (polynomial) effects into a predictive model. M-activation can detect high-order interactions -- a traditionally non-trivial challenge. Details concerning application, methodology, and relevant survey literature can be found in this library's vignette, "About.".
Makes a word cloud of text, sized by the frequency of the word, and colored either by user-specified colors or colored by the strength of the coefficient of that text derived from a regression model.
This package implements the computation of discrepancy statistics summarizing differences between the density of imputed and observed values and the construction of weights to balance covariates that are part of the missing data mechanism as described in Marbach (2021) <arXiv:2107.05427>.
Generates internet memes that optionally include a superimposed inset plot and other atypical features, combining the visual impact of an attention-grabbing meme with graphic results of data analysis. The package differs from related packages that focus on imitating and reproducing standard memes. Some packages do this by interfacing with online meme generators whereas others achieve this natively. This package takes the latter approach. It does not interface with online meme generators or require any authentication with external websites. It reads images directly from local files or via URL and meme generation is done by the package. While this is similar to the meme package available on CRAN, it differs in that the focus is on allowing for non-standard meme layouts and hybrids of memes mixed with graphs. While this package can be used to make basic memes like an online meme generator would produce, it caters primarily to hybrid graph-meme plots where the meme presentation can be seen as a backdrop highlighting foreground graphs of data analysis results. The package also provides support for an arbitrary number of meme text labels with arbitrary size, position and other attributes rather than restricting to the standard top and/or bottom text placement. This is useful for proper aesthetic interleaving of plots of data between meme image backgrounds and overlain text labels. The package offers a selection of templates for graph placement and appearance with respect to the underlying meme. Graph templates also permit additional template-specific customization. Animated gif support is provided but this is optional and functional only if the magick package is installed. magick is not required unless gif functionality is desired.
Enhances mlexperiments <https://CRAN.R-project.org/package=mlexperiments> with additional machine learning ('ML') learners. The package provides R6-based learners for the following algorithms: glmnet <https://CRAN.R-project.org/package=glmnet>, ranger <https://CRAN.R-project.org/package=ranger>, xgboost <https://CRAN.R-project.org/package=xgboost>, and lightgbm <https://CRAN.R-project.org/package=lightgbm>. These can be used directly with the mlexperiments R package.
Package for moving grid adjustment in plant breeding field trials.
Estimation/multiple imputation programs for mixed categorical and continuous data.