Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Parse various reflectance/transmittance/absorbance spectra file formats to extract spectral data and metadata, as described in Gruson, White & Maia (2019) <doi:10.21105/joss.01857>. Among other formats, it can import files from Avantes <https://www.avantes.com/>, CRAIC <https://www.microspectra.com/>, and OceanOptics'/'OceanInsight <https://www.oceanoptics.com/> brands.
Temporary and permanent message queues for R. Built on top of SQLite databases. SQLite provides locking, and makes it possible to detect crashed consumers. Crashed jobs can be automatically marked as "failed", or put in the queue again, potentially a limited number of times.
Create custom labels, badges, certificates and other documents. Automate the production of potentially large numbers of herbarium and collection labels, accreditation badges, attendance and participation certificates, etc, and deliver them automatically. Documents are generated in PDF format, which requires a working installation of LaTeX', such as TinyTeX'.
This package provides a set of tools designed to enhance transparency and understanding of date-time manipulation functions from the lubridate package. It provides detailed feedback about the operations performed by lubridate functions, allowing users to better comprehend and debug their code. These insights serve as both a learning tool for newcomers and a debugging aid for programmers working with date-time data.
For high-dimensional correlated observations, this package carries out the L_1 penalized maximum likelihood estimation of the precision matrix (network) and the correlation parameters. The correlated data can be longitudinal data (may be irregularly spaced) with dampening correlation or clustered data with uniform correlation. For the details of the algorithms, please see the paper Jie Zhou et al. Identifying Microbial Interaction Networks Based on Irregularly Spaced Longitudinal 16S rRNA sequence data <doi:10.1101/2021.11.26.470159>.
Datasets for the fourth edition of "Statistics: Unlocking the Power of Data" by Lock^5 Includes versions of datasets from earlier editions.
Simplex optimization algorithms as firstly proposed by Spendley et al. (1962) <doi:10.1080/00401706.1962.10490033> and later modified by Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308> for laboratory and manufacturing processes. The package also provides tools for graphical representation of the simplexes and some example response surfaces that are useful in illustrating the optimization process.
Changes of landscape diversity and structure can be detected soon if relying on landscape class combinations and analysing patterns at multiple scales. LandComp provides such an opportunity, based on Juhász-Nagy's functions (Juhász-Nagy P, Podani J 1983 <doi:10.1007/BF00129432>). Functions can handle multilayered data. Requirements of the input: binary data contained by a regular square or hexagonal grid, and the grid should have projected coordinates.
Efficient implementation of Friedman's boosting algorithm with l2-loss function and coordinate direction (design matrix columns) basis functions.
This package provides tools for detecting and correcting sample mix-ups between two sets of measurements, such as between gene expression data on two tissues. Broman et al. (2015) <doi:10.1534/g3.115.019778>.
This package implements the kK-NN algorithm, an adaptive k-nearest neighbor classifier that adjusts the neighborhood size based on local data curvature. The method estimates local Gaussian curvature by approximating the shape operator of the data manifold. This approach aims to improve classification performance, particularly in datasets with limited samples.
Maximum likelihood estimation of log-binomial regression with special functionality when the MLE is on the boundary of the parameter space.
Simulate lobster catch process in a trap fishery. Factors such as lobster density on ocean floor, their movement, trap saturation and bait shrinkage rate can be modeled. Details of the methods for modeling those processes can be found in: Addison and Bell (1997) <doi:10.1071/MF97169>.
This package provides a framework for integrating Large Language Models (LLMs) with R programming through workflow automation. Built on the ReAct (Reasoning and Acting) architecture, enables bi-directional communication between LLMs and R environments. Features include automated code generation and execution, intelligent error handling with retry mechanisms, persistent session management, structured JSON output validation, and context-aware conversation management.
Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Marketing Mix Modeling (Robyn), Exploratory, API, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or advanced R programming skills.
This package provides functions to simulate data from large-scale educational assessments, including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design. The theoretical foundation can be found on Matta, T.H., Rutkowski, L., Rutkowski, D. et al. (2018) <doi:10.1186/s40536-018-0068-8>.
For fitting Bayesian joint latent class and regression models using Gibbs sampling. See the documentation for the model. The technical details of the model implemented here are described in Elliott, Michael R., Zhao, Zhangchen, Mukherjee, Bhramar, Kanaya, Alka, Needham, Belinda L., "Methods to account for uncertainty in latent class assignments when using latent classes as predictors in regression models, with application to acculturation strategy measures" (2020) In press at Epidemiology <doi:10.1097/EDE.0000000000001139>.
Analysis of dichotomous, ordinal, and continuous response data using latent space item response models (LSIRMs). Provides 1PL and 2PL LSIRMs for binary response data as described in Jeon et al. (2021) <doi:10.1007/s11336-021-09762-5>, extensions for continuous response data, and graded response models (GRM) for Likert-scale ordinal data as described in De Carolis et al. (2025) <doi:10.1080/00273171.2025.2605678>. Supports Bayesian model selection with spike-and-slab priors, adaptive MCMC algorithms, and methods for handling missing data under missing at random (MAR) and missing completely at random (MCAR) assumptions. Provides various diagnostic plots to inspect the latent space and summaries of estimated parameters.
This package provides functions to upload vectorial data and derive landscape connectivity metrics in habitat or matrix systems. Additionally, includes an approach to assess individual patch contribution to the overall landscape connectivity, enabling the prioritization of habitat patches. The computation of landscape connectivity and patch importance are very useful in Landscape Ecology research. The metrics available are: number of components, number of links, size of the largest component, mean size of components, class coincidence probability, landscape coincidence probability, characteristic path length, expected cluster size, area-weighted flux and integral index of connectivity. Pascual-Hortal, L., and Saura, S. (2006) <doi:10.1007/s10980-006-0013-z> Urban, D., and Keitt, T. (2001) <doi:10.2307/2679983> Laita, A., Kotiaho, J., Monkkonen, M. (2011) <doi:10.1007/s10980-011-9620-4>.
This package provides a collection of various R functions for the purpose of Luminescence dating data analysis. This includes, amongst others, data import, export, application of age models, curve deconvolution, sequence analysis and plotting of equivalent dose distributions.
Time series analysis based on lambda transformer and variational seq2seq, built on Torch'.
In the fashion of node.js <https://nodejs.org/>, requires a file, sourcing into the current environment only the variables explicitly specified in the module.exports or exports list variable. If the file was already sourced, the result of the earlier sourcing is returned to the caller.
Allows you to read and change the state of LIFX smart light bulbs via the LIFX developer api <https://api.developer.lifx.com/>. Covers most LIFX api endpoints, including changing light color and brightness, selecting lights by id, group or location as well as activating effects.
This package provides a complete framework for frequency analysis is provided by LMoFit'. It has functions related to the determination of sample L-moments as in Hosking, J.R.M. (1990) <doi:10.1111/j.2517-6161.1990.tb01775.x>, the fitting of various distributions as in Zaghloul et al. (2020) <doi:10.1016/j.advwatres.2020.103720> and Hosking, J.R.M. (2019) <https://CRAN.R-project.org/package=lmom>, besides plotting and manipulating L-space diagrams as in Papalexiou, S.M. & Koutsoyiannis, D. (2016) <doi:10.1016/j.advwatres.2016.05.005> for two-shape parametric distributions on the L-moment ratio diagram. Additionally, the quantile, probability density, and cumulative probability functions of various distributions are provided in a user-friendly manner.