Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Common coordinate-based workflows involving processed chromatin loop and genomic element data are considered and packaged into appropriate customizable functions. Includes methods for linking element sets via chromatin loops and creating consensus loop datasets.
This package provides functions implementing multivariate state space models for purposes of time series analysis and forecasting. The focus of the package is on multivariate models, such as Vector Exponential Smoothing, Vector ETS (Error-Trend-Seasonal model) etc. It currently includes Vector Exponential Smoothing (VES, de Silva et al., 2010, <doi:10.1177/1471082X0901000401>), Vector ETS (Svetunkov et al., 2023, <doi:10.1016/j.ejor.2022.04.040>) and simulation function for VES.
Provide sets of functions and methods to learn and practice data science using idea of algorithmic trading. Main goal is to process information within "Decision Support System" to come up with analysis or predictions. There are several utilities such as dynamic and adaptive risk management using reinforcement learning and even functions to generate predictions of price changes using pattern recognition deep regression learning. Summary of Methods used: Awesome H2O tutorials: <https://github.com/h2oai/awesome-h2o>, Market Type research of Van Tharp Institute: <https://vantharp.com/>, Reinforcement Learning R package: <https://CRAN.R-project.org/package=ReinforcementLearning>.
This package provides a diverse collection of georeferenced and spatial datasets from different domains including urban studies, housing markets, environmental monitoring, transportation, and socio-economic indicators. The package consolidates datasets from multiple open sources such as Kaggle, chopin, spData, adespatial, and bivariateLeaflet. It is designed for researchers, analysts, and educators interested in spatial analysis, geostatistics, and geographic data visualization. The datasets include point patterns, polygons, socio-economic data frames, and network-like structures, allowing flexible exploration of geospatial phenomena.
Alternate font rendering is useful when rendering text to novel graphics outputs where modern font rendering is not available or where bespoke text positioning is required. Bitmap and vector fonts allow for custom layout and rendering using pixel coordinates and line drawing. Formatted text is created as a data.frame of pixel coordinates (for bitmap fonts) or stroke coordinates (for vector fonts). All text can be easily previewed as a matrix or raster image. A selection of fonts is included with this package.
Implementation of the Swiss Confederation's standard analysis model for salary analyses <www.ebg.admin.ch/en/equal-pay-analysis-with-logib> in R. The analysis is run at company-level and the model is intended for medium-sized and large companies. It can technically be used with 50 or more employees (apprentices, trainees/interns and expats are not included in the analysis). Employees with at least 100 employees are required by the Gender Equality Act to conduct an equal pay analysis. This package allows users to run the equal salary analysis in R, providing additional transparency with respect to the methodology and simple automation possibilities.
An R implementation of the LexRank algorithm described by G. Erkan and D. R. Radev (2004) <DOI:10.1613/jair.1523>.
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
Interpretability of complex machine learning models is a growing concern. This package helps to understand key factors that drive the decision made by complicated predictive model (so called black box model). This is achieved through local approximations that are either based on additive regression like model or CART like model that allows for higher interactions. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016) <doi:10.1145/2939672.2939778>. More details can be found in Staniak, Biecek (2018) <doi:10.32614/RJ-2018-072>.
Generates the Langa-Weir classification of cognitive function for the 2022 Health and Retirement Study (HRS) cognition data. It is particularly useful for researchers studying cognitive aging who wish to work with the most recent release of HRS data. The package provides user-friendly functions for data preprocessing, scoring, and classification allowing users to easily apply the Langa-Weir classification system. For details regarding the; HRS <https://hrsdata.isr.umich.edu/> and Langa-Weir classifications <https://hrsdata.isr.umich.edu/data-products/langa-weir-classification-cognitive-function-1995-2020>.
Rapid satellite data streams in operational applications have clear benefits for monitoring land cover, especially when information can be delivered as fast as changing surface conditions. Over the past decade, remote sensing has become a key tool for monitoring and predicting environmental variables by using satellite data. This package presents the main applications in remote sensing for land surface monitoring and land cover mapping (soil, vegetation, water...). Tomlinson, C.J., Chapman, L., Thornes, E., Baker, C (2011) <doi:10.1002/met.287>.
Flexible functions that use lme4 as computational engine for fitting models used in Genomic Selection (GS). GS is a technology used for genetic improvement, and it has many advantages over phenotype-based selection. There are several statistical models that adequately approach the statistical challenges in GS, such as in linear mixed models (LMMs). The lme4 is the standard package for fitting linear and generalized LMMs in the R-package, but its use for genetic analysis is limited because it does not allow the correlation between individuals or groups of individuals to be defined. The lme4GS package is focused on fitting LMMs with covariance structures defined by the user, bandwidth selection, and genomic prediction. The new package is focused on genomic prediction of the models used in GS and can fit LMMs using different variance-covariance matrices. Several examples of GS models are presented using this package as well as the analysis using real data. For more details see Caamal-Pat et.al. (2021) <doi:10.3389/fgene.2021.680569>.
Fits the Logit Leaf Model, makes predictions and visualizes the output. (De Caigny et al., (2018) <DOI:10.1016/j.ejor.2018.02.009>).
This package creates a consensus genetic map by merging linkage maps from different populations. The software uses linear programming (LP) to efficiently minimize the mean absolute error between the consensus map and the linkage maps. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts.
This package provides Shiny widgets and theme that support a Library Computer Access/Retrieval System (LCARS) aesthetic for Shiny apps. The package also includes functions for adding a minimal LCARS theme to static ggplot2 graphs. More details about LCARS can be found at <https://en.wikipedia.org/wiki/LCARS>.
Publication-ready regional gene locus plots similar to those produced by the web interface LocusZoom <https://my.locuszoom.org>, but running locally in R. Genetic or genomic data with gene annotation tracks are plotted via R base graphics, ggplot2 or plotly', allowing flexibility and easy customisation including laying out multiple locus plots on the same page. It uses the LDlink API <https://ldlink.nih.gov/?tab=apiaccess> to query linkage disequilibrium data from the 1000 Genomes Project and can overlay this on plots <doi:10.1093/bioadv/vbaf006>.
This package provides a bootstrap proportion test for Brand Lift Testing to quantify the effectiveness of online advertising. Methods of the bootstrap proportion test are presented in Liu, Yu, Mao, Wu, Dyer (2023) <doi:10.1145/3583780.3615021>.
It allows to cluster communication networks using the Stochastic Topic Block Model <doi:10.1007/s11222-016-9713-7> by posting jobs through the API of the linkage.fr server, which implements the clustering method. The package also allows to visualize the clustering results returned by the server.
An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.
Robust test(s) for model diagnostics in regression. The current version contains a robust test for functional specification (linearity). The test is based on the robust bounded-influence test by Heritier and Ronchetti (1994) <doi:10.1080/01621459.1994.10476822>.
Real-time quantitative polymerase chain reaction (qPCR) data sets by Lievens et al. (2012) <doi:10.1093/nar/gkr775>. Provides one single tabular tidy data set in long format, encompassing three dilution series, targeted against the soybean Lectin endogene. Each dilution series was assayed in one of the following PCR-efficiency-modifying conditions: no PCR inhibition, inhibition by isopropanol and inhibition by tannic acid. The inhibitors were co-diluted along with the dilution series. The co-dilution series consists of a five-point, five-fold serial dilution. For each concentration there are 18 replicates. Each amplification curve is 60 cycles long. Original raw data file is available at the Supplementary Data section at Nucleic Acids Research Online <doi:10.1093/nar/gkr775>.
Classification method obtained through linear programming. It is advantageous with respect to the classical developments when the distribution of the variables involved is unknown or when the number of variables is much greater than the number of individuals. Mathematical details behind the method are published in Nueda, et al. (2022) "LPDA: A new classification method based on linear programming". <doi:10.1371/journal.pone.0270403>.
Random forests are a statistical learning method widely used in many areas of scientific research essentially for its ability to learn complex relationships between input and output variables and also its capacity to handle high-dimensional data. However, current random forests approaches are not flexible enough to handle longitudinal data. In this package, we propose a general approach of random forests for high-dimensional longitudinal data. It includes a flexible stochastic model which allows the covariance structure to vary over time. Furthermore, we introduce a new method which takes intra-individual covariance into consideration to build random forests. The method is fully detailled in Capitaine et.al. (2020) <doi:10.1177/0962280220946080> Random forests for high-dimensional longitudinal data.
Time series analysis based on lambda transformer and variational seq2seq, built on Torch'.