Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Do multilevel mediation analysis with generalized additive multilevel models. The analysis method is described in Yu and Li (2020), "Third-Variable Effect Analysis with Multilevel Additive Models", PLoS ONE 15(10): e0241072.
This package provides a guidance system for analysis with missing data. It incorporates expert, up-to-date methodology to help researchers choose the most appropriate analysis approach when some data are missing. You provide the available data and the assumed causal structure, including the likely causes of missing data. midoc will advise which analysis approaches can be used, and how best to perform them. midoc follows the framework for the treatment and reporting of missing data in observational studies (TARMOS). Lee et al (2021). <doi:10.1016/j.jclinepi.2021.01.008>.
This package provides methods to construct multivariate grids, which can be used for multivariate quadrature. This grids can be based on different quadrature rules like Newton-Cotes formulas (trapezoidal-, Simpson's- rule, ...) or Gauss quadrature (Gauss-Hermite, Gauss-Legendre, ...). For the construction of the multidimensional grid the product-rule or the combination- technique can be applied.
Applying the methodology from Manuel et al. to estimate parameters using a matched case control data with a mismeasured exposure variable that is accompanied by instrumental variables (Submitted).
Performance measures and scores for statistical classification such as accuracy, sensitivity, specificity, recall, similarity coefficients, AUC, GINI index, Brier score and many more. Calculation of optimal cut-offs and decision stumps (Iba and Langley (1991), <doi:10.1016/B978-1-55860-247-2.50035-8>) for all implemented performance measures. Hosmer-Lemeshow goodness of fit tests (Lemeshow and Hosmer (1982), <doi:10.1093/oxfordjournals.aje.a113284>; Hosmer et al (1997), <doi:10.1002/(SICI)1097-0258(19970515)16:9%3C965::AID-SIM509%3E3.0.CO;2-O>). Statistical and epidemiological risk measures such as relative risk, odds ratio, number needed to treat (Porta (2014), <doi:10.1093%2Facref%2F9780199976720.001.0001>).
Fast implementation of mathematical operations and performance metrics for multi-objective optimization, including filtering and ranking of dominated vectors according to Pareto optimality, computation of the empirical attainment function, V.G. da Fonseca, C.M. Fonseca, A.O. Hall (2001) <doi:10.1007/3-540-44719-9_15>, hypervolume metric, C.M. Fonseca, L. Paquete, M. López-Ibáñez (2006) <doi:10.1109/CEC.2006.1688440>, epsilon indicator, inverted generational distance, and Vorob'ev threshold, expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others.
This package performs treatment assignment for (field) experiments considering available, possibly multivariate and continuous, information (covariates, observable characteristics), that is: forms balanced treatment groups, according to the minMSE-method as proposed by Schneider and Schlather (2017) <DOI:10419/161931>.
Automated calculation and visualization of survey data statistics on a color-coded (choropleth) map.
Find dark genes. These genes are often disregarded due to no detected mutation or differential expression, but are important in coordinating the functionality in cancer networks.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. mcbette allows to do a Bayesian model comparison over some site and clock models, using babette (<https://github.com/ropensci/babette/>).
Computes the Nelson-Aalen estimator of the cumulative transition hazard for arbitrary Markov multistate models <ISBN:978-0-387-68560-1>.
This package provides a novel mediation analysis approach to address zero-inflated mediators containing true zeros and false zeros. See Jiang et al (2023) "A Novel Causal Mediation Analysis Approach for Zero-Inflated Mediators" <arXiv:2301.10064> for more details.
This package implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit -- an estimated effect and its associated squared standard error -- and fits a nonparametric, shape-constrained mixture separately on two latent parameters. It reports local false discovery rates (lfdr) and local false sign rates (lfsr). Manuscript describing algorithm of MixTwice: Zheng et al(2021) <doi: 10.1093/bioinformatics/btab162>.
Programmatic interface to several NASA Earth Observation OPeNDAP servers (Open-source Project for a Network Data Access Protocol) (<https://www.opendap.org/>). Allows for easy downloads of MODIS subsets, as well as other Earth Observation datacubes, in a time-saving and efficient way : by sampling it at the very downloading phase (spatially, temporally and dimensionally).
This package provides a comprehensive collection of linkage methods for agglomerative hierarchical clustering on a matrix of proximity data (distances or similarities), returning a multifurcated dendrogram or multidendrogram. Multidendrograms can group more than two clusters when ties in proximity data occur, and therefore they do not depend on the order of the input data. Descriptive measures to analyze the resulting dendrogram are additionally provided. <doi:10.18637/jss.v114.i02>.
Dichotomous responses having two categories can be analyzed with stats::glm() or lme4::glmer() using the family=binomial option. Unfortunately, polytomous responses with three or more unordered categories cannot be analyzed similarly because there is no analogous family=multinomial option. For between-subjects data, nnet::multinom() can address this need, but it cannot handle random factors and therefore cannot handle repeated measures. To address this gap, we transform nominal response data into counts for each categorical alternative. These counts are then analyzed using (mixed) Poisson regression as per Baker (1994) <doi:10.2307/2348134>. Omnibus analyses of variance can be run along with post hoc pairwise comparisons. For users wishing to analyze nominal responses from surveys or experiments, the functions in this package essentially act as though stats::glm() or lme4::glmer() provide a family=multinomial option.
Read a table of fixed width formatted data of different types into a data.frame for each type.
This package implements so called Maximum Likelihood Multiple Imputation as described by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>. A number of different imputations are available, by utilising the norm', cat and mix packages. Inferences can be performed either using combination rules similar to Rubin's or using a likelihood score based approach based on theory by Wang and Robins (1998) <doi:10.1093/biomet/85.4.935>.
Implementation of Multiple Comparison Procedures with Modeling (MCP-Mod) procedure with bias-corrected estimators and second-order covariance matrices as described in Diniz, Gallardo and Magalhaes (2023) <doi:10.1002/pst.2303>.
An implementation of a method for building simultaneous confidence intervals for the probabilities of a multinomial distribution given a set of observations, proposed by Sison and Glaz in their paper: Sison, C.P and J. Glaz. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 90:366-369 (1995). The method is an R translation of the SAS code implemented by May and Johnson in their paper: May, W.L. and W.D. Johnson. Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software 5(6) (2000). Paper and code available at <DOI:10.18637/jss.v005.i06>.
An approach to identifies metabolic biomarker signature for metabolic data by discovering predictive metabolite for predicting survival and classifying patients into risk groups. Classifiers are constructed as a linear combination of predictive/important metabolites, prognostic factors and treatment effects if necessary. Several methods were implemented to reduce the metabolomics matrix such as the principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9> , the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3>, the elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected predictive metabolites and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique.
Several functions for maximum likelihood estimation of various univariate and multivariate distributions. The list includes more than 100 functions for univariate continuous and discrete distributions, distributions that lie on the real line, the positive line, interval restricted, circular distributions. Further, multivariate continuous and discrete distributions, distributions for compositional and directional data, etc. Some references include Johnson N. L., Kotz S. and Balakrishnan N. (1994). "Continuous Univariate Distributions, Volume 1" <ISBN:978-0-471-58495-7>, Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). "Univariate Discrete Distributions". <ISBN:978-0-471-71580-1> and Mardia, K. V. and Jupp, P. E. (2000). "Directional Statistics". <ISBN:978-0-471-95333-3>.
This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.
The user must supply a matrix filled with similarity values. The software will search for significant differences between similarity values at different hierarchical levels. The algorithm will return a Loess-smoothed plot of the similarity values along with the inflection point, if there are any. There is the option to search for an inflection point within a specified range. The package also has a function that will return the matrix components at a specified cutoff. References: Mullner. <ArXiv:1109.2378>; Cserhati, Carter. (2020, Journal of Creation 34(3):41-50), <https://dl0.creation.com/articles/p137/c13759/j34-3_64-73.pdf>.