Data on the first 24 seasons of the UK TV show I'm a Celebrity, Get Me Out of Here', broadcast from 2002-2024. Taken from the Wikipedia pages for each season and the main page available at <https://en.wikipedia.org/wiki/I%27m_a_Celebrity...Get_Me_Out_of_Here!_(British_TV_series)>.
It helps in development of a principal component analysis based composite index by assigning weights to variables and combining the weighted variables. For method details see Sendhil, R., Jha, A., Kumar, A. and Singh, S. (2018). <doi:10.1016/j.ecolind.2018.02.053>, and Wu, T. (2021). <doi:10.1016/j.ecolind.2021.108006>.
This package provides a unified framework to building Area Deprivation Index (ADI), Social Vulnerability Index (SVI), and Neighborhood Deprivation Index (NDI) deprivation measures and accessing related data from the U.S. Census Bureau such as Gini coefficient data. Tools are also available for calculating percentiles, quantiles, and for creating clear map breaks for data visualization.
Three general demographic decomposition methods: Pseudo-continuous decomposition proposed by Horiuchi, Wilmoth, and Pletcher (2008) <doi:10.1353/dem.0.0033>, stepwise replacement decomposition proposed by Andreev, Shkolnikov and Begun (2002) <doi:10.4054/DemRes.2002.7.14>
, and lifetable response experiments proposed by Caswell (1989) <doi:10.1016/0304-3800(89)90019-7>.
For multiple full/partial ranking lists, R package ExtMallows
can (1) detect whether the input ranking lists are over-correlated, and (2) use the Mallows model or extended Mallows model to integrate the ranking lists, and (3) use hierarchical extended Mallows model for rank integration if there are groups of over-correlated ranking lists.
Downloads a satellite image via ESRI and maptiles (these are originally from a variety of aerial photography sources), translates the image into a perceptually uniform color space, runs one of a few different clustering algorithms on the colors in the image searching for a user-supplied number of colors, and returns the resulting color palette.
This package provides efficient geospatial thinning algorithms to reduce the density of coordinate data while maintaining spatial relationships. Implements K-D Tree and brute-force distance-based thinning, as well as grid-based and precision-based thinning methods. For more information on the methods, see Elseberg et al. (2012) <https://hdl.handle.net/10446/86202>.
Consider the linear mixed model with normal random effects. A typical method to solve Henderson's Mixed Model Equations (HMME) is recursive estimation of the fixed effects and random effects. We provide a fast, stable, and scalable solver to the HMME without computing matrix inverse. See Kim (2017) <arXiv:1710.09663>
for more details.
Ternary plots made simple. This package allows to create ternary plots using graphics'. It provides functions to display the data in the ternary space, to add or tune graphical elements and to display statistical summaries. It also includes common ternary diagrams which are useful for the archaeologist (e.g. soil texture charts, ceramic phase diagram).
An eclectic collection of short stories and poetry with topics on climate strange, connecting the geopolitical dots, the myth of us versus them, and the idiocy of war. Please refer to the COPYRIGHTS file and the text_citation.cff file for the reference copyright information and for the complete citations of the reference sources, respectively.
Computational routines for estimating local Gaussian parameters. Local Gaussian parameters are useful for characterizing and testing for non-linear dependence within bivariate data. See e.g. Tjostheim and Hufthammer, Local Gaussian correlation: A new measure of dependence, Journal of Econometrics, 2013, Volume 172 (1), pages 33-48 <DOI:10.1016/j.jeconom.2012.08.001>.
This package provides a framework that allows for easy logging of changes in data. Main features: start tracking changes by adding a single line of code to an existing script. Track changes in multiple datasets, using multiple loggers. Add custom-built loggers or use loggers offered by other packages. <doi:10.18637/jss.v098.i01>.
Adjusted odds ratio conditional on potential confounders can be directly obtained from logistic regression. However, those adjusted odds ratios have been widely incorrectly interpreted as a relative risk. As relative risk is often of interest in public health, we provide a simple code to return adjusted relative risks from logistic regression model under potential confounders.
Compute the coefficient of determination for outcomes in n-dimensions. May be useful for multidimensional predictions (such as a multinomial model) or calculating goodness of fit from latent variable models such as probabilistic topic models like latent Dirichlet allocation or deterministic topic models like latent semantic analysis. Based on Jones (2019) <arXiv:1911.11061>
.
Multivariate generalized Gaussian distribution, Multivariate Cauchy distribution, Multivariate t distribution. Distance between two distributions (see N. Bouhlel and A. Dziri (2019): <doi:10.1109/LSP.2019.2915000>, N. Bouhlel and D. Rousseau (2022): <doi:10.3390/e24060838>, N. Bouhlel and D. Rousseau (2023): <doi:10.1109/LSP.2023.3324594>). Manipulation of these multivariate probability distributions.
Given a set of models for which a measure of model (mis)fit and model complexity is provided, CHull()
, developed by Ceulemans and Kiers (2006) <doi:10.1348/000711005X64817>, determines the models that are located on the boundary of the convex hull and selects an optimal model by means of the scree test values.
This allows you to generate reporting workflows around nlmixr2 analyses with outputs in Word and PowerPoint
. You can specify figures, tables and report structure in a user-definable YAML file. Also you can use the internal functions to access the figures and tables to allow their including in other outputs (e.g. R Markdown).
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Cluster analysis via nonparametric density estimation is performed. Operationally, the kernel method is used throughout to estimate the density. Diagnostics methods for evaluating the quality of the clustering are available. The package includes also a routine to estimate the probability density function obtained by the kernel method, given a set of data with arbitrary dimensions.
This package provides a framework for creating interactive figures for data exploration. All plots are automatically linked and support several kinds of interactive features, including selection, zooming, panning, and parameter manipulation. The figures can be interacted with either manually, using a mouse and a keyboard, or by running code from inside an active R session.
Survival analysis with sparse longitudinal covariates under right censoring scheme. Different hazards models are involved. Please cite the manuscripts corresponding to this package: Sun, Z. et al. (2022) <doi:10.1007/s10985-022-09548-6>, Sun, Z. and Cao, H. (2023) <arXiv:2310.15877>
and Sun, D. et al. (2023) <arXiv:2308.15549>
.
This package implements parsimonious mixtures of MSEN and MTIN distributions via expectation- maximization based algorithms for model-based clustering. For each mixture component, parsimony is reached via the eigen-decomposition of the scale matrices and by imposing a constraint on the tailedness parameter. This produces a family of 28 parsimonious mixture models for each distribution.
Built on top of the tibble package, tibbletime is an extension that allows for the creation of time aware tibbles. Some immediate advantages of this include: the ability to perform time-based subsetting on tibbles, quickly summarising and aggregating results by time periods, and creating columns that can be used as dplyr time-based groups.
Uses bootstrap to test zero order correlation being equal to a partial or semi-partial correlation (one or two tailed). Confidence intervals for the parameter (zero order minus partial) can also be determined. Implements the bias-corrected and accelerated bootstrap method as described in "An Introduction to the Bootstrap" Efron (1983) <0-412-04231-2>.