Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analise multivariada, tendo funcoes que executam analise de correspondencia simples (CA) e multipla (MCA), analise de componentes principais (PCA), analise de correlacao canonica (CCA), analise fatorial (FA), escalonamento multidimensional (MDS), analise discriminante linear (LDA) e quadratica (QDA), analise de cluster hierarquico e nao hierarquico, regressao linear simples e multipla, analise de multiplos fatores (MFA) para dados quantitativos, qualitativos, de frequencia (MFACT) e dados mistos, biplot, scatter plot, projection pursuit (PP), grant tour e outras funcoes uteis para a analise multivariada.
Recursively calculates mass properties (mass, center of mass, moments and products of inertia, and optionally, their uncertainties) for arbitrary decomposition trees. R. L. Zimmerman, J. H. Nakai. (2005) <https://www.sawe.org/product/paper-3360/>).
This package provides a comprehensive tool for almost all existing multiple testing methods for discrete data. The package also provides some novel multiple testing procedures controlling FWER/FDR for discrete data. Given discrete p-values and their domains, the [method].p.adjust function returns adjusted p-values, which can be used to compare with the nominal significant level alpha and make decisions. For users convenience, the functions also provide the output option for printing decision rules.
Given a vector of multivariate normal data, a matrix of covariates and the data covariance matrix, generate new multivariate normal samples that have the same covariance matrix based on permutations of the transformed data residuals.
This package provides functions for fitting models of trait evolution on phylogenies for continuous traits. The majority of functions described in Thomas and Freckleton (2012) <doi:10.1111/j.2041-210X.2011.00132.x> and include functions that allow for tests of variation in the rates of trait evolution.
Create animated biplots that enables dynamic visualisation of temporal or sequential changes in multivariate data by animating a single biplot across the levels of a time variable. It builds on objects from the biplotEZ package, Lubbe S, le Roux N, Nienkemper-Swanepoel J, Ganey R, Buys R, Adams Z, Manefeldt P (2024) <doi:10.32614/CRAN.package.biplotEZ>, allowing users to create animated biplots that reveal how both samples and variables evolve over time.
The stepwise variable selection procedure (with iterations between the forward and backward steps) can be used to obtain the best candidate final regression model in regression analysis. All the relevant covariates are put on the variable list to be selected. The significance levels for entry (SLE) and for stay (SLS) are usually set to 0.15 (or larger) for being conservative. Then, with the aid of substantive knowledge, the best candidate final regression model is identified manually by dropping the covariates with p value > 0.05 one at a time until all regression coefficients are significantly different from 0 at the chosen alpha level of 0.05.
Novel method to unbiasedly include studies with Non-statistically Significant Unreported Effects (NSUEs) in a meta-analysis. First, the function calculates the interval where the unreported effects (e.g., t-values) should be according to the threshold of statistical significance used in each study. Afterward, the method uses maximum likelihood techniques to impute the expected effect size of each study with NSUEs, accounting for between-study heterogeneity and potential covariates. Multiple imputations of the NSUEs are then randomly created based on the expected value, variance, and statistical significance bounds. Finally, it conducts a restricted-maximum likelihood random-effects meta-analysis separately for each set of imputations, and it performs estimations from these meta-analyses. Please read the reference in metansue for details of the procedure.
Includes functions for conducting univariate and multivariate meta-analysis. This includes the estimation of the asymptotic variance-covariance matrix of effect sizes. For more details see Becker (1992) <doi:10.2307/1165128>, Cooper, Hedges, and Valentine (2019) <doi:10.7758/9781610448864>, and Schmid, Stijnen, and White (2020) <doi:10.1201/9781315119403>.
This package contains a collection of datasets for working with machine learning tasks. It will contain datasets for supervised machine learning Jiang (2020)<doi:10.1016/j.beth.2020.05.002> and will include datasets for classification and regression. The aim of this package is to use data generated around health and other domains.
Fitting and testing multinomial processing tree (MPT) models, a class of nonlinear models for categorical data. The parameters are the link probabilities of a tree-like graph and represent the latent cognitive processing steps executed to arrive at observable response categories (Batchelder & Riefer, 1999 <doi:10.3758/bf03210812>; Erdfelder et al., 2009 <doi:10.1027/0044-3409.217.3.108>; Riefer & Batchelder, 1988 <doi:10.1037/0033-295x.95.3.318>).
An interactive presentation on the topic of Multinomial Logistic Regression. It is helpful to those who want to learn Multinomial Logistic Regression quickly and get a hands on experience. The presentation has a template for solving problems on Multinomial Logistic Regression. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/MultinomPresentation>.
Density, distribution function, quantile function, and random generation function based on Salem, H. M. (2019)<doi:10.5539/mas.v13n2p54>. In addition, a numerical method for maximum likelihood estimation is provided.
This package provides routines for multivariate measurement error correction. Includes procedures for linear, logistic and Cox regression models. Bootstrapped standard errors and confidence intervals can be obtained for corrected estimates.
An R interface to the MinIO Client. The MinIO Client ('mc') provides a modern alternative to UNIX commands like ls', cat', cp', mirror', diff', find etc. It supports filesystems and Amazon "S3" compatible cloud storage service ("AWS" Signature v2 and v4). This package provides convenience functions for installing the MinIO client and running any operations, as described in the official documentation, <https://min.io/docs/minio/linux/reference/minio-mc.html?ref=docs-redirect>. This package provides a flexible and high-performance alternative to aws.s3'.
This package provides tools to analysis of experiments having two or more quantitative explanatory variables and one quantitative dependent variable. Experiments can be without repetitions or with a statistical design (Hair JF, 2016) <ISBN: 13: 978-0138132637>. Pacote para uma analise de experimentos havendo duas ou mais variaveis explicativas quantitativas e uma variavel dependente quantitativa. Os experimentos podem ser sem repeticoes ou com delineamento estatistico (Hair JF, 2016) <ISBN: 13: 978-0138132637>.
Encodes several methods for performing Mendelian randomization analyses with summarized data. Summarized data on genetic associations with the exposure and with the outcome can be obtained from large consortia. These data can be used for obtaining causal estimates using instrumental variable methods.
This package contains auxiliary routines for influx software. This packages is not intended to be used directly. Influx was published here: Sokol et al. (2012) <doi:10.1093/bioinformatics/btr716>.
Deconvolution of thermal decay curves allows you to quantify proportions of biomass components in plant litter. Thermal decay curves derived from thermogravimetric analysis (TGA) are imported, modified, and then modelled in a three- or four- part mixture model using the Fraser-Suzuki function. The output is estimates for weights of pseudo-components corresponding to hemicellulose, cellulose, and lignin. For more information see: Müller-Hagedorn, M. and Bockhorn, H. (2007) <doi:10.1016/j.jaap.2006.12.008>, à rfão, J. J. M. and Figueiredo, J. L. (2001) <doi:10.1016/S0040-6031(01)00634-7>, and Yang, H. and Yan, R. and Chen, H. and Zheng, C. and Lee, D. H. and Liang, D. T. (2006) <doi:10.1021/ef0580117>.
Regression methods to quantify the relation between two measurement methods are provided by this package. In particular it addresses regression problems with errors in both variables and without repeated measurements. It implements the Clinical Laboratory Standard International (CLSI) recommendations (see J. A. Budd et al. (2018, <https://clsi.org/standards/products/method-evaluation/documents/ep09/>) for analytical method comparison and bias estimation using patient samples. Furthermore, algorithms for Theil-Sen and equivariant Passing-Bablok estimators are implemented, see F. Dufey (2020, <doi:10.1515/ijb-2019-0157>) and J. Raymaekers and F. Dufey (2022, <arXiv:2202:08060>). Further the robust M-Deming and MM-Deming (experimental) are available, see G. Pioda (2021, <arXiv:2105:04628>). A comprehensive overview over the implemented methods and references can be found in the manual pages mcrPioda-package and mcreg'.
Implementation of the Monothetic Clustering algorithm (Chavent, 1998 <doi:10.1016/S0167-8655(98)00087-7>) on continuous data sets. A lot of extensions are included in the package, including applying Monothetic clustering on data sets with circular variables, visualizations with the results, and permutation and cross-validation based tests to support the decision on the number of clusters.
This package provides a general framework for clinical trial simulations based on the Clinical Scenario Evaluation (CSE) approach. The package supports a broad class of data models (including clinical trials with continuous, binary, survival-type and count-type endpoints as well as multivariate outcomes that are based on combinations of different endpoints), analysis strategies and commonly used evaluation criteria.
Calculates MeDiA_K (means Mean Distance Association by K-nearest neighbor) in order to detect nonlinear associations.
Highly variable gene selection methods, including popular public available methods, and also the mixture of multiple highly variable gene selection methods, <https://github.com/RuzhangZhao/mixhvg>. Reference: <doi:10.1101/2024.08.25.608519>.