Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
66 data sets that were imported using read.table() where appropriate but more commonly after converting to a csv file for importing via read.csv().
Multiscale moving sum procedure for the detection of changes in expectation in univariate sequences. References - Multiscale change point detection via gradual bandwidth adjustment in moving sum processes (2021+), Tijana Levajkovic and Michael Messer.
Rudimentary functions for sampling and calculating density from the matrix-variate variance-gamma distribution.
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <doi:10.48550/arXiv.1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for ggplot2 (Wickham (2016), ISBN:978-3-319-24277-4).
This package provides a metadata structure for clinical data analysis and reporting based on Analysis Data Model (ADaM) datasets. The package simplifies clinical analysis and reporting tool development by defining standardized inputs, outputs, and workflow. The package can be used to create analysis and reporting planning grid, mock table, and validated analysis and reporting results based on consistent inputs.
This package provides methods for Geographically Weighted Regression with spatial autocorrelation (Geniaux and Martinetti 2017) <doi:10.1016/j.regsciurbeco.2017.04.001>. Implements Multiscale Geographically Weighted Regression with Top-Down Scale approaches (Geniaux 2026) <doi:10.1007/s10109-025-00481-4>.
Implementation of the sampling and aggregation method for the covariate shift maximin effect, which was proposed in <arXiv:2011.07568>. It constructs the confidence interval for any linear combination of the high-dimensional maximin effect.
Performing multiple-class cluster correspondence analysis(MCCCA). The main functions are create.MCCCAdata() to create a list to be applied to MCCCA, MCCCA() to apply MCCCA, and plot.mccca() for visualizing MCCCA result. Methods used in the package refers to Mariko Takagishi and Michel van de Velden (2022)<doi:10.1080/10618600.2022.2035737>.
Quantification is a prominent machine learning task that has received an increasing amount of attention in the last years. The objective is to predict the class distribution of a data sample. This package is a collection of machine learning algorithms for class distribution estimation. This package include algorithms from different paradigms of quantification. These methods are described in the paper: A. Maletzke, W. Hassan, D. dos Reis, and G. Batista. The importance of the test set size in quantification assessment. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI20, pages 2640â 2646, 2020. <doi:10.24963/ijcai.2020/366>.
This will allow easier management of a CRAN-style repository on local networks (i.e. not on CRAN). This might be necessary where hosted packages contain intellectual property owned by a corporation.
This package provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arXiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arXiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.
Fast implementations of mathematical operations and performance metrics for multi-objective optimization, including filtering and ranking of dominated vectors according to Pareto optimality, hypervolume metric, C.M. Fonseca, L. Paquete, M. López-Ibáñez (2006) <doi:10.1109/CEC.2006.1688440>, epsilon indicator, inverted generational distance, computation of the empirical attainment function, V.G. da Fonseca, C.M. Fonseca, A.O. Hall (2001) <doi:10.1007/3-540-44719-9_15>, and Vorob'ev threshold, expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others.
Density, distribution function, quantile function, and random generation function based on Salem, H. M. (2019)<doi:10.5539/mas.v13n2p54>. In addition, a numerical method for maximum likelihood estimation is provided.
This package provides a HTML widget rendering the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript'. In addition to the built-in features of the Monaco editor, the widget allows to prettify multiple languages, to view the HTML rendering of Markdown code, and to view and resize SVG images.
This package contains functions to estimate the proportion of effects stronger than a threshold of scientific importance (function prop_stronger), to nonparametrically characterize the distribution of effects in a meta-analysis (calib_ests, pct_pval), to make effect size conversions (r_to_d, r_to_z, z_to_r, d_to_logRR), to compute and format inference in a meta-analysis (format_CI, format_stat, tau_CI), to scrape results from existing meta-analyses for re-analysis (scrape_meta, parse_CI_string, ci_to_var).
Many times, you will not find data for all dates. After first January, 2011 you may have next data on 20th January, 2011 and so on. Also available dates may have zero values. Try to gather all such kinds of data in different excel sheets of a single excel file. Every sheet will contain two columns (1st one is dates and second one is the data). After loading all the sheets into different elements of a list, using this you can fill the gaps for all the sheets and mark all the corresponding values as zeros. Here I am talking about daily data. Finally, it will combine all the filled results into one data frame (first column is date and other columns will be corresponding values of your sheets) and give one combined data frame. Number of columns in the data frame will be number of sheets plus one. Then imputation will be done. Daily to monthly and weekly conversion is also possible. More details can be found in Garai and others (2023) <doi:10.13140/RG.2.2.11977.42087>.
Simulation, analysis and sampling of spatial biodiversity data (May, Gerstner, McGlinn, Xiao & Chase 2017) <doi:10.1111/2041-210x.12986>. In the simulation tools user define the numbers of species and individuals, the species abundance distribution and species aggregation. Functions for analysis include species rarefaction and accumulation curves, species-area relationships and the distance decay of similarity.
Generates Muller plot from parental/genealogy/phylogeny information and population/abundance/frequency dynamics data. Muller plots are plots which combine information about succession of different OTUs (genotypes, phenotypes, species, ...) and information about dynamics of their abundances (populations or frequencies) over time. They are powerful and fascinating tools to visualize evolutionary dynamics. They may be employed also in study of diversity and its dynamics, i.e. how diversity emerges and how changes over time. They are called Muller plots in honor of Hermann Joseph Muller which used them to explain his idea of Muller's ratchet (Muller, 1932, American Naturalist). A big difference between Muller plots and normal box plots of abundances is that a Muller plot depicts not only the relative abundances but also succession of OTUs based on their genealogy/phylogeny/parental relation. In a Muller plot, horizontal axis is time/generations and vertical axis represents relative abundances of OTUs at the corresponding times/generations. Different OTUs are usually shown with polygons with different colors and each OTU originates somewhere in the middle of its parent area in order to illustrate their succession in evolutionary process. To generate a Muller plot one needs the genealogy/phylogeny/parental relation of OTUs and their abundances over time. MullerPlot package has the tools to generate Muller plots which clearly depict the origin of successors of OTUs.
This package provides a user-friendly interface for the construction of Makefiles'.
Routines to perform estimation and inference under the multivariate t-distribution <doi:10.1007/s10182-022-00468-2>. Currently, the following methodologies are implemented: multivariate mean and covariance estimation, hypothesis testing about equicorrelation and homogeneity of variances, the Wilson-Hilferty transformation, QQ-plots with envelopes and random variate generation.
Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) <doi:10.1007/978-3-319-20807-7_36>; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) <doi:10.1016/j.ijar.2013.09.012>; I. Pérez-Bernabé, A. Fernández, R. Rumà , A. Salmerón (2016) <doi:10.1007/s10618-015-0429-7>). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called motbf and jointmotbf'.
This package provides the biggest amount of statistical measures in the whole R world. Includes measures of regression, (multiclass) classification and multilabel classification. The measures come mainly from the mlr package and were programed by several mlr developers.
Calculates and differentiates probabilities and density of (conditional) multivariate normal distribution and Gaussian copula (with various marginal distributions) using methods described in A. Genz (2004) <doi:10.1023/B:STCO.0000035304.20635.31>, A. Genz, F. Bretz (2009) <doi:10.1007/978-3-642-01689-9>, H. I. Gassmann (2003) <doi:10.1198/1061860032283> and E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>.
This package provides multigroup Kitagawa-Blinder-Oaxaca ('mKBO') decompositions, that allow for more than two groups. Each group is compared to the sample average. For more details see Thaning and Nieuwenhuis (2025) <doi:10.31235/osf.io/6twvj_v1>.