Reads annual financial reports including assets, liabilities, dividends history, stockholder composition and much more from Bovespa's DFP, FRE and FCA systems <http://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/empresas-listadas.htm>. These are web based interfaces for all financial reports of companies traded at Bovespa. The package is specially designed for large scale data importation, keeping a tabular (long) structure for easier processing.
This package provides tools for plotting gene clusters and transcripts by importing data from GenBank
, FASTA, and GFF files. It performs BLASTP and MUMmer alignments [Altschul et al. (1990) <doi:10.1016/S0022-2836(05)80360-2>; Delcher et al. (1999) <doi:10.1093/nar/27.11.2369>] and displays results on gene arrow maps. Extensive customization options are available, including legends, labels, annotations, scales, colors, tooltips, and more.
Computes individual causes of death and population cause-specific mortality fractions using the InSilicoVA
algorithm from McCormick
et al. (2016) <DOI:10.1080/01621459.2016.1152191>. It uses data derived from verbal autopsy (VA) interviews, in a format similar to the input of the widely used InterVA
method. This package provides general model fitting and customization for InSilicoVA
algorithm and basic graphical visualization of the output.
Multiple tools are now available for inferring the personalised germ line set from an adaptive immune receptor repertoire. Output from these tools is converted to a single format and supplemented with rich data such as usage and characterisation of novel germ line alleles. This data can be particularly useful when considering the validity of novel inferences. Use of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
The accumulation of single-cell RNA-seq ('scRNA-seq
') studies highlights the potential benefits of integrating multiple datasets. By augmenting sample sizes and enhancing analytical robustness, integration can lead to more insightful biological conclusions. However, challenges arise due to the inherent diversity and batch discrepancies within and across studies. SCIntRuler
', a novel R package, addresses these challenges by guiding the integration of multiple scRNA-seq
datasets.
Web application using shiny for the SSD (Species Sensitivity Distribution) module of the MOSAIC (MOdeling and StAtistical
tools for ecotoxICology
) platform. It estimates the Hazardous Concentration for x% of the species (HCx) from toxicity values that can be censored and provides various plotting options for a better understanding of the results. See our companion paper Kon Kam King et al. (2014) <doi:10.48550/arXiv.1311.5772>
.
Tidal analysis of evenly spaced observed time series (time step 1 to 60 min) with or without shorter gaps using the harmonic representation of inequalities. The analysis should preferably cover an observation period of at least 19 years. For shorter periods low frequency constituents are not taken into account, in accordance with the Rayleigh-Criterion. The main objective of this package is to synthesize or predict a tidal time series.
This package provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
This package implements inferential methods to compare gene lists in terms of their biological meaning as expressed in the GO. The compared gene lists are characterized by cross-tabulation frequency tables of enriched GO items. Dissimilarity between gene lists is evaluated using the Sorensen-Dice index. The fundamental guiding principle is that two gene lists are taken as similar if they share a great proportion of common enriched GO items.
Casting metadata for REDCap database creation and handling of castellated data using repeated instruments and longitudinal projects in REDCap'. Keeps a focused data export approach, by allowing to only export required data from the database. Also for casting new REDCap databases based on datasets from other sources. Originally forked from the R part of REDCapRITS
by Paul Egeler. See <https://github.com/pegeler/REDCapRITS>
. REDCap (Research Electronic Data Capture) is a secure, web-based software platform designed to support data capture for research studies, providing 1) an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3) automated export procedures for seamless data downloads to common statistical packages; and 4) procedures for data integration and interoperability with external sources (Harris et al (2009) <doi:10.1016/j.jbi.2008.08.010>; Harris et al (2019) <doi:10.1016/j.jbi.2019.103208>).
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()
).
Generates DNA sequences based on Markov model techniques for matched sequences. This can be generalized to several sequences. The sequences (taxa) are then arranged in an evolutionary tree (phylogenetic tree) depicting how taxa diverge from their common ancestors. This gives the tests and estimation methods for the parameters of different models. Standard phylogenetic methods assume stationarity, homogeneity and reversibility for the Markov processes, and often impose further restrictions on the parameters.
This package implements fast, scalable optimization algorithms for fitting generalized principal components analysis (GLM-PCA) models, as described in "A Generalization of Principal Components Analysis to the Exponential Family" Collins M, Dasgupta S, Schapire RE (2002, ISBN:9780262271738), and subsequently "Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model" Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>.
In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for both penalized and unpenalized PSH regression in linear time using a novel forward-backward scan. Penalties include Ridge, Lease Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Plus (MCP), and elastic net <doi: 10.32614/RJ-2021-010>.
Given a landscape resistance surface, creates minimum planar graph (Fall et al. (2007) <doi:10.1007/s10021-007-9038-7>) and grains of connectivity (Galpern et al. (2012) <doi:10.1111/j.1365-294X.2012.05677.x>) models that can be used to calculate effective distances for landscape connectivity at multiple scales. Documentation is provided by several vignettes, and a paper (Chubaty, Galpern & Doctolero (2020) <doi:10.1111/2041-210X.13350>).
Kernel density estimation with hexagonal grid for bivariate data. Hexagonal grid has many beneficial properties like equidistant neighbours and less edge bias, making it better for spatial analyses than the more commonly used rectangular grid. Carr, D. B. et al. (1987) <doi:10.2307/2289444>. Diggle, P. J. (2010) <doi:10.1201/9781420072884>. Hill, B. (2017) <https://blog.bruce-hill.com/meandering-triangles>. Jones, M. C. (1993) <doi:10.1007/BF00147776>.
Predicts any variable in any categorical dataset for given values of predictor variables. If a dataset contains 4 variables, then any variable can be predicted based on the values of the other three variables given by the user. The user can upload their own datasets and select what variable they want to predict. A handsontable is provided to enter the predictor values and also accuracy of the prediction is also shown.
This package implements the three parallel forecast combinations of Markov Switching GARCH and extreme learning machine model along with the selection of appropriate model for volatility forecasting. For method details see Hsiao C, Wan SK (2014). <doi:10.1016/j.jeconom.2013.11.003>, Hansen BE (2007). <doi:10.1111/j.1468-0262.2007.00785.x>, Elliott G, Gargano A, Timmermann A (2013). <doi:10.1016/j.jeconom.2013.04.017>.
Build CPMs (cumulative probability models, also known as cumulative link models) to account for detection limits (both single and multiple detection limits) in response variables. Conditional quantiles and conditional CDFs can be calculated based on fitted models. The package implements methods described in Tian, Y., Li, C., Tu, S., James, N. T., Harrell, F. E., & Shepherd, B. E. (2022). "Addressing Detection Limits with Semiparametric Cumulative Probability Models". <arXiv:2207.02815>
.
Bayesian logistic regression model with optional EXchangeability-NonEXchangeability
parameter modelling for flexible borrowing from historical or concurrent data-sources. The safety model can guide dose-escalation decisions for adaptive oncology Phase I dose-escalation trials which involve an arbitrary number of drugs. Please refer to Neuenschwander et al. (2008) <doi:10.1002/sim.3230> and Neuenschwander et al. (2016) <doi:10.1080/19466315.2016.1174149> for details on the methodology.
This package provides a framework for building enterprise, scalable and UI-standardized shiny applications. It brings enhanced features such as bootstrap v4 <https://getbootstrap.com/docs/4.0/getting-started/introduction/>, additional and enhanced shiny modules, customizable UI features, as well as an enhanced application file organization paradigm. This update allows developers to harness the ability to build powerful applications and enriches the shiny developers experience when building and maintaining applications.
Phenotypic analysis of data coming from high throughput phenotyping (HTP) platforms, including different types of outlier detection, spatial analysis, and parameter estimation. The package is being developed within the EPPN2020 project (<https://eppn2020.plant-phenotyping.eu/>). Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
Tide analysis and prediction of predominantly semi-diurnal tides with two high waters and two low waters during one lunar day (~24.842 hours, ~1.035 days). The analysis should preferably cover an observation period of at least 19 years. For shorter periods, for example, the nodal cycle can not be taken into account, which particularly affects the height calculation. The main objective of this package is to produce tide tables.
This package provides a toolkit to detect clusters from distance matrices. The distance matrices are assumed to be calculated between the cells of multiple animals ('Caenorhabditis elegans') from input time-series matrices. Some functions for generating distance matrices, performing clustering, evaluating the clustering, and visualizing the results of clustering and evaluation are available. We're also providing the download function to retrieve the calculated distance matrices from figshare <https://figshare.com>.