Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Run flexible mediation analyses using natural effect models as described in Lange, Vansteelandt and Bekaert (2012) <DOI:10.1093/aje/kwr525>, Vansteelandt, Bekaert and Lange (2012) <DOI:10.1515/2161-962X.1014> and Loeys, Moerkerke, De Smet, Buysse, Steen and Vansteelandt (2013) <DOI:10.1080/00273171.2013.832132>.
Uses dplyr and tidyeval to fit statistical models inside the database. It currently supports KMeans and linear regression models.
Algorithms to build set partitions and commutator matrices and their use in the construction of multivariate d-Hermite polynomials; estimation and derivation of theoretical vector moments and vector cumulants of multivariate distributions; conversion formulae for multivariate moments and cumulants. Applications to estimation and derivation of multivariate measures of skewness and kurtosis; estimation and derivation of asymptotic covariances for d-variate Hermite polynomials, multivariate moments and cumulants and measures of skewness and kurtosis. The formulae implemented are discussed in Terdik (2021, ISBN:9783030813925), "Multivariate Statistical Methods".
This package provides a comprehensive toolkit for missing person identification combining genetic and non-genetic evidence within a Bayesian framework. Computes likelihood ratios (LRs) for DNA profiles, biological sex, age, hair color, and birthdate evidence. Provides decision analysis tools including optimal LR thresholds, error rate calculations, and ROC curve visualization. Includes interactive Shiny applications for exploring evidence combinations. For methodological details see Marsico et al. (2023) <doi:10.1016/j.fsigen.2023.102891> and Marsico, Vigeland et al. (2021) <doi:10.1016/j.fsigen.2021.102519>.
Following the common types of measures of uncertainty for parameter estimation, two measures of uncertainty were proposed for model selection, see Liu, Li and Jiang (2020) <doi:10.1007/s11749-020-00737-9>. The first measure is a kind of model confidence set that relates to the variation of model selection, called Mac. The second measure focuses on error of model selection, called LogP. They are all computed via bootstrapping. This package provides functions to compute these two measures. Furthermore, a similar model confidence set adapted from Bayesian Model Averaging can also be computed using this package.
Framework for creating and orchestrating data pipelines. Organize, orchestrate, and monitor multiple pipelines in a single project. Use tags to decorate functions with scheduling parameters and configuration.
This package provides a set of tools to facilitate data sonification and handle the musicXML format <https://usermanuals.musicxml.com/MusicXML/Content/XS-MusicXML.htm>. Several classes are defined for basic musical objects such as note pitch, note duration, note, measure and score. Moreover, sonification utilities functions are provided, e.g. to map data into musical attributes such as pitch, loudness or duration. A typical sonification workflow hence looks like: get data; map them to musical attributes; create and write the musicXML score, which can then be further processed using specialized music software (e.g. MuseScore', GuitarPro', etc.). Examples can be found in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).
Enable operationalized evaluation of disease outcomes in multiple sclerosis. â MSoutcomesâ requires longitudinally recorded clinical data structured in long format. The package is based on the research developed at Clinical Outcomes Research unit (CORe), University of Melbourne and Neuroimmunology Centre, Royal Melbourne Hospital. Kalincik et al. (2015) <doi:10.1093/brain/awv258>. Lorscheider et al. (2016) <doi:10.1093/brain/aww173>. Sharmin et al. (2022) <doi:10.1111/ene.15406>. Dzau et al. (2023) <doi:10.1136/jnnp-2023-331748>.
Routines to generate fully randomized moodle quizzes. It also contains 15 examples and a shiny app.
This package provides exact and approximate algorithms for the horseshoe prior in linear regression models, which were proposed by Johndrow et al. (2020) <https://www.jmlr.org/papers/v21/19-536.html>.
This package implements the Model Context Protocol (MCP). Users can start R'-based servers, serving functions as tools for large language models to call before responding to the user in MCP-compatible apps like Claude Desktop and Claude Code', with options to run those tools inside of interactive R sessions. On the other end, when R is the client via the ellmer package, users can register tools from third-party MCP servers to integrate additional context into chats.
Matching longitudinal methodology models with complex sampling design. It fits fixed and random effects models and covariance structured models so far. It also provides tools to perform statistical tests considering these specifications as described in : Pacheco, P. H. (2021). "Modeling complex longitudinal data in R: development of a statistical package." <https://repositorio.ufjf.br/jspui/bitstream/ufjf/13437/1/pedrohenriquedemesquitapacheco.pdf>.
This is a implementation of design methods for multi-state reliability demonstration tests (MSRDT) with failure count data, which is associated with the work from the published paper "Multi-state Reliability Demonstration Tests" by Suiyao Chen et al. (2017) <doi:10.1080/08982112.2017.1314493>. It implements two types of MSRDT, multiple periods (MP) and multiple failure modes (MFM). For MP, two different scenarios with criteria on cumulative periods (Cum) or separate periods (Sep) are implemented respectively. It also provides the implementation of conventional design method, namely binomial tests for failure count data.
Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) <doi:10.1111/j.1468-0335.1958.tb00003.x>, transfer entropy by Schreiber (2000) <doi:10.1103/PhysRevLett.85.461>, and weak instrument tests by Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006>.
Projection based methods for preprocessing, exploring and analysis of multivariate data used in chemometrics. S. Kucheryavskiy (2020) <doi:10.1016/j.chemolab.2020.103937>.
Multivariable fractional polynomial algorithm simultaneously selects variables and functional forms in both generalized linear models and Cox proportional hazard models. Key references are Royston and Altman (1994) <doi:10.2307/2986270> and Royston and Sauerbrei (2008, ISBN:978-0-470-02842-1). In addition, it can model a sigmoid relationship between variable x and an outcome variable y using the approximate cumulative distribution transformation proposed by Royston (2014) <doi:10.1177/1536867X1401400206>. This feature distinguishes it from a standard fractional polynomial function, which lacks the ability to achieve such modeling.
Response Surface Designs (RSDs) involving factors not all at same levels are called Mixed Level RSDs (or Asymmetric RSDs). In many practical situations, RSDs with asymmetric levels will be more suitable as it explores more regions in the design space. (J.S. Mehta and M.N. Das (1968) <doi:10.2307/1267046>. "Asymmetric rotatable designs and orthogonal transformations").This package contains function named ATORDs_I() for generating asymmetric third order rotatable designs (ATORDs) based on third order designs given by Das and Narasimham (1962). Function ATORDs_II() generates asymmetric third order rotatable designs developed using t-design of unequal set sizes, which are smaller in size as compared to design generated by function ATORDs_I(). In general, third order rotatable designs can be classified into two classes viz., designs that are suitable for sequential experimentation and designs for non-sequential experimentation. The sequential experimentation approach involves conducting the trials step by step whereas, in the non-sequential experimentation approach, the entire runs are executed in one go (M. N. Das and V. Narasimham (1962) <doi:10.1214/AOMS/1177704374>. "Construction of Rotatable Designs through Balanced Incomplete Block Designs"). ATORDs_I() and ATORDs_II() functions generate non-sequential asymmetric third order designs. Function named SeqTORD() generates symmetric sequential third order design in blocks and also gives G-efficiency of the given design. Function named Asymseq() generates asymmetric sequential third order designs in blocks (M. Hemavathi, Eldho Varghese, Shashi Shekhar and Seema Jaggi (2020) <doi:10.1080/02664763.2020.1864817>. "Sequential asymmetric third order rotatable designs (SATORDs)"). In response surface design, situations may arise in which some of the factors are qualitative in nature (Jyoti Divecha and Bharat Tarapara (2017) <doi:10.1080/08982112.2016.1217338>. "Small, balanced, efficient, optimal, and near rotatable response surface designs for factorial experiments asymmetrical in some quantitative, qualitative factors"). The Function named QualRSD() generates second order design with qualitative factors along with their D-efficiency and G-efficiency. The function named RotatabilityQ() calculates a measure of rotatability (measure Q, 0 <= Q <= 1) given by Draper and Pukelshiem(1990) for given a design based on a second order model, (Norman R. Draper and Friedrich Pukelsheim(1990) <doi:10.1080/00401706.1990.10484635>. "Another look at rotatability").
An implementation of the Super Learner prediction algorithm from van der Laan, Polley, and Hubbard (2007) <doi:10.2202/1544-6115.1309 using the mlr3 framework.
Facilitate frequentist and Bayesian meta-analysis of diagnosis and prognosis research studies. It includes functions to summarize multiple estimates of prediction model discrimination and calibration performance (Debray et al., 2019) <doi:10.1177/0962280218785504>. It also includes functions to evaluate funnel plot asymmetry (Debray et al., 2018) <doi:10.1002/jrsm.1266>. Finally, the package provides functions for developing multivariable prediction models from datasets with clustering (de Jong et al., 2021) <doi:10.1002/sim.8981>.
This package provides functions for diagnostic meta-analysis. Next to basic analysis and visualization the bivariate Model of Reitsma et al. (2005) that is equivalent to the HSROC of Rutter & Gatsonis (2001) can be fitted. A new approach based to diagnostic meta-analysis of Holling et al. (2012) is also available. Standard methods like summary, plot and so on are provided.
Fitting multivariate covariance generalized linear models (McGLMs) to data. McGLM is a general framework for non-normal multivariate data analysis, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. The models take non-normality into account in the conventional way by means of a variance function, and the mean structure is modelled by means of a link function and a linear predictor. The models are fitted using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of different types of response variables and covariance structures, including multivariate extensions of repeated measures, time series, longitudinal, spatial and spatio-temporal structures. The package offers a user-friendly interface for fitting McGLMs similar to the glm() R function. See Bonat (2018) <doi:10.18637/jss.v084.i04>, for more information and examples.
This package provides tools for econometric analysis and economic modelling with the traditional two-input Constant Elasticity of Substitution (CES) function and with nested CES functions with three and four inputs. The econometric estimation can be done by the Kmenta approximation, or non-linear least-squares using various gradient-based or global optimisation algorithms. Some of these algorithms can constrain the parameters to certain ranges, e.g. economically meaningful values. Furthermore, the non-linear least-squares estimation can be combined with a grid-search for the rho-parameter(s). The estimation methods are described in Henningsen et al. (2021) <doi:10.4337/9781788976480.00030>.
The modified Adult Treatment Panel -III guidelines (ATP-III) proposed by American Heart Association (AHA) and National Heart, Lung and Blood Institute (NHLBI) are used widely for the clinical diagnosis of Metabolic Syndrome. The AHA-NHLBI criteria advise using parameters such as waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), triglycerides (TG) and high-density lipoprotein cholesterol (HDLC) for diagnosis of metabolic syndrome. Each parameter has to be interpreted based on the proposed cut-offs, making the diagnosis slightly complex and error-prone. This package is developed by incorporating the modified ATP-III guidelines, and it will aid in the easy and quick diagnosis of metabolic syndrome in busy healthcare settings and also for research purposes. The modified ATP-III-AHA-NHLBI criteria for the diagnosis is described by Grundy et al ., (2005) <doi:10.1161/CIRCULATIONAHA.105.169404>.
Gene selection based on variance using the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Please see the reference: Li X, Fu Y, Wang X, DeMeo DL, Tantisira K, Weiss ST, Qiu W. (2018) <doi:10.1155/2018/6591634>.