Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed models using a Min-Max (MM) algorithm (Laporte, F., Charcosset, A. & Mary-Huard, T. (2022) <doi:10.1371/journal.pcbi.1009659>).
Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisitopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.
This package provides a basic interface for accessing annotation data from the Multi-CAST collection, a database of spoken natural language texts edited by Geoffrey Haig and Stefan Schnell. The collection draws from a diverse set of languages and has been annotated across multiple levels. Annotation data is downloaded on request from the servers of the University of Bamberg. See the Multi-CAST website <https://multicast.aspra.uni-bamberg.de/> for more information and a list of related publications.
Data-driven approach for Exploratory Factor Analysis (EFA) that uses Model Implied Instrumental Variables (MIIVs). The method starts with a one factor model and arrives at a suggested model with enhanced interpretability that allows cross-loadings and correlated errors.
Multidimensional unfolding using Schoenemann's algorithm for metric and Procrustes rotation of unfolding results.
Statistical tests for validating multispecies coalescent gene tree simulators, using pairwise distances and rooted triple counts. See Allman ES, Baños HD, Rhodes JA 2023. Testing multispecies coalescent simulators using summary statistics, IEEE/ACM Trans Comput Biol Bioinformat, 20(2):1613â 1618. <doi:10.1109/TCBB.2022.3177956>.
This package provides a facility to generate various classes of fractional designs for order-of-addition experiments namely fractional order-of-additions orthogonal arrays, see Voelkel, Joseph G. (2019). "The design of order-of-addition experiments." Journal of Quality Technology 51:3, 230-241, <doi:10.1080/00224065.2019.1569958>. Provides facility to construct component orthogonal arrays, see Jian-Feng Yang, Fasheng Sun and Hongquan Xu (2020). "A Component Position Model, Analysis and Design for Order-of-Addition Experiments." Technometrics, <doi:10.1080/00401706.2020.1764394>. Supports generation of fractional designs for order-of-addition mixture experiments. Analysis of data from order-of-addition mixture experiments is also supported.
This package provides functions to perform sensitivity analysis on a model with multivariate output.
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
Modular implementation of Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) [Zhang and Li (2007), <DOI:10.1109/TEVC.2007.892759>] for quick assembling and testing of new algorithmic components, as well as easy replication of published MOEA/D proposals. The full framework is documented in a paper published in the Journal of Statistical Software [<doi:10.18637/jss.v092.i06>].
This package provides a guidance system for analysis with missing data. It incorporates expert, up-to-date methodology to help researchers choose the most appropriate analysis approach when some data are missing. You provide the available data and the assumed causal structure, including the likely causes of missing data. midoc will advise which analysis approaches can be used, and how best to perform them. midoc follows the framework for the treatment and reporting of missing data in observational studies (TARMOS). Lee et al (2021). <doi:10.1016/j.jclinepi.2021.01.008>.
There is an increasing interest in investigating how the compositions of microbial communities are associated with human health and disease. In this package, we present a novel global testing method called aMiSPU, that is highly adaptive and thus high powered across various scenarios, alleviating the issue with the choice of a phylogenetic distance. Our simulations and real data analysis demonstrated that aMiSPU test was often more powerful than several competing methods while correctly controlling type I error rates.
Perform calculations for the WHO International Reference Reagents for the microbiome. Using strain, species or genera abundance tables generated through analysis of 16S ribosomal RNA sequencing or shotgun sequencing which included a reference reagent. This package will calculate measures of sensitivity, False positive relative abundance, diversity, and similarity based on mean average abundances with respect to the reference reagent.
Carries out model-based clustering, classification and discriminant analysis using five different models. The models are all based on the generalized hyperbolic distribution. The first model MGHD (Browne and McNicholas (2015) <doi:10.1002/cjs.11246>) is the classical mixture of generalized hyperbolic distributions. The MGHFA (Tortora et al. (2016) <doi:10.1007/s11634-015-0204-z>) is the mixture of generalized hyperbolic factor analyzers for high dimensional data sets. The MSGHD is the mixture of multiple scaled generalized hyperbolic distributions, the cMSGHD is a MSGHD with convex contour plots and the MCGHD', mixture of coalesced generalized hyperbolic distributions is a new more flexible model (Tortora et al. (2019)<doi:10.1007/s00357-019-09319-3>. The paper related to the software can be found at <doi:10.18637/jss.v098.i03>.
R Client for the Microsoft Cognitive Services Web Language Model REST API, including Break Into Words, Calculate Conditional Probability, Calculate Joint Probability, Generate Next Words, and List Available Models. A valid account MUST be registered at the Microsoft Cognitive Services website <https://www.microsoft.com/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
Calculates the expected/observed Fisher information and the bias-corrected maximum likelihood estimate(s) via Cox-Snell Methodology.
Uses dplyr and tidyeval to fit statistical models inside the database. It currently supports KMeans and linear regression models.
Multiplicative AR(1) with Seasonal is a stochastic process model built on top of AR(1). The package provides the following procedures for MAR(1)S processes: fit, compose, decompose, advanced simulate and predict.
This package provides functions similar to the SAS macros previously provided to accompany Collins, Dziak, and Li (2009) <DOI:10.1037/a0015826> and Dziak, Nahum-Shani, and Collins (2012) <DOI:10.1037/a0026972>, papers which outline practical benefits and challenges of factorial and fractional factorial experiments for scientists interested in developing biological and/or behavioral interventions, especially in the context of the multiphase optimization strategy (see Collins, Kugler & Gwadz 2016) <DOI:10.1007/s10461-015-1145-4>. The package currently contains three functions. First, RelativeCosts1() draws a graph of the relative cost of complete and reduced factorial designs versus other alternatives. Second, RandomAssignmentGenerator() returns a dataframe which contains a list of random numbers that can be used to conveniently assign participants to conditions in an experiment with many conditions. Third, FactorialPowerPlan() estimates the power, detectable effect size, or required sample size of a factorial or fractional factorial experiment, for main effects or interactions, given several possible choices of effect size metric, and allowing pretests and clustering.
First- and higher-order likelihood inference in meta-analysis and meta-regression models.
Implementation of parametric and semiparametric mixture cure models based on existing R packages. See details of the models in Peng and Yu (2020) <ISBN: 9780367145576>.
Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes. Directional and other multivariate histograms are provided.
Package to carry out merged block randomization (Van der Pas (2019), <doi:10.1177/1740774519827957>), a restricted randomization method designed for small clinical trials (at most 100 subjects) or trials with small strata, for example in multicentre trials. It can be used for more than two groups or unequal randomization ratios.
Applying the methodology from Manuel et al. to estimate parameters using a matched case control data with a mismeasured exposure variable that is accompanied by instrumental variables (Submitted).