Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement meta-analyses for simultaneously estimating individual means with shrinkage, isotonic regression and pretests. Include our original implementation of the isotonic regression via the pool-adjacent-violators algorithm (PAVA) algorithm. For the pretest estimator, the confidence interval for individual means are provided. Methodologies were published in Taketomi et al. (2021) <doi:10.3390/axioms10040267>, Taketomi et al. (2022) <doi:10.3390/a15010026>, Taketomi et al. (2023-) (under review).
Computation of the multivariate marine recovery index, including functions for data visualization and ecological diagnostics of marine ecosystems. The computational details are described in the original publication. Reference: Chauvel, N., Grall, J., Thiébaut, E., Houbin, C., Pezy, J.P. (in press). "A general-purpose Multivariate Marine Recovery Index for quantifying the influence of human activities on benthic habitat ecological status". Ecological Indicators.
Large-scale matrix-variate data have been widely observed nowadays in various research areas such as finance, signal processing and medical imaging. Modelling matrix-valued data by matrix-elliptical family not only provides a flexible way to handle heavy-tail property and tail dependencies, but also maintains the intrinsic row and column structure of random matrices. We proposed a new tool named matrix Kendall's tau which is efficient for analyzing random elliptical matrices. By applying this new type of Kendellâ s tau to the matrix elliptical factor model, we propose a Matrix-type Robust Two-Step (MRTS) method to estimate the loading and factor spaces. See the details in He at al. (2022) <arXiv:2207.09633>. In this package, we provide the algorithms for calculating sample matrix Kendall's tau, the MRTS method and the Matrix Kendall's tau Eigenvalue-Ratio (MKER) method which is used for determining the number of factors.
Background - Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. Results - mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. Conclusions - mulea is distributed as a CRAN R package. It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.
This package provides functions to predict one multi-way array (i.e., a tensor) from another multi-way array, using a low-rank CANDECOMP/PARAFAC (CP) factorization and a ridge (L_2) penalty [Lock, EF (2018) <doi:10.1080/10618600.2017.1401544>]. Also includes functions to sample from the Bayesian posterior of a tensor-on-tensor model.
R functions for the estimation and eigen-decomposition of multivariate autoregressive models.
This package contains functions for mapping odds ratios, hazard ratios, or other effect estimates using individual-level data such as case-control study data, using generalized additive models (GAMs) or Cox models for smoothing with a two-dimensional predictor (e.g., geolocation or exposure to chemical mixtures) while adjusting linearly for confounding variables, using methods described by Kelsall and Diggle (1998), Webster at al. (2006), and Bai et al. (2020). Includes convenient functions for mapping point estimates and confidence intervals, efficient control sampling, and permutation tests for the null hypothesis that the two-dimensional predictor is not associated with the outcome variable (adjusting for confounders).
Convenience functions and datasets to be used with Practical Multilevel Modeling using R. The package includes functions for calculating group means, group mean centered variables, and displaying some basic missing data information. A function for computing robust standard errors for linear mixed models based on Liang and Zeger (1986) <doi:10.1093/biomet/73.1.13> and Bell and McCaffrey (2002) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/9058-eng.pdf?st=NxMjN1YZ> is included as well as a function for checking for level-one homoskedasticity (Raudenbush & Bryk, 2002, ISBN:076191904X).
This package implements the Multi-Objective Clustering Algorithm Guided by a-Priori Biological Knowledge (MOC-GaPBK) which was proposed by Parraga-Alava, J. et. al. (2018) <doi:10.1186/s13040-018-0178-4>.
If results from a meta-GWAS are used for validation in one of the cohorts that was included in the meta-analysis, this will yield biased (i.e. too optimistic) results. The validation cohort needs to be independent from the meta-Genome-Wide-Association-Study (meta-GWAS) results. MetaSubtract will subtract the results of the respective cohort from the meta-GWAS results analytically without having to redo the meta-GWAS analysis using the leave-one-out methodology. It can handle different meta-analyses methods and takes into account if single or double genomic control correction was applied to the original meta-analysis. It can also handle different meta-analysis methods. It can be used for whole GWAS, but also for a limited set of genetic markers. See for application: Nolte I.M. et al. (2017); <doi: 10.1038/ejhg.2017.50>.
Exploratory model analysis with <http://ggobi.org>. Fit and graphical explore ensembles of linear models.
Modified functions of the package pcalg and some additional functions to run the PC and the FCI (Fast Causal Inference) algorithm for constraint-based causal discovery in incomplete and multiply imputed datasets. Foraita R, Friemel J, Günther K, Behrens T, Bullerdiek J, Nimzyk R, Ahrens W, Didelez V (2020) <doi:10.1111/rssa.12565>; Andrews RM, Bang CW, Didelez V, Witte J, Foraita R (2021) <doi:10.1093/ije/dyae113>; Witte J, Foraita R, Didelez V (2022) <doi:10.1002/sim.9535>.
Implementation of methods for minimizing ill-conditioned problems. Currently only includes regularized (quasi-)newton optimization (Kanzow and Steck et al. (2023), <doi:10.1007/s12532-023-00238-4>).
Extends the base classes and methods of caret package for integration of base learners. The user can input the number of different base learners, and specify the final learner, along with the train-validation-test data partition split ratio. The predictions on the unseen new data is the resultant of the ensemble meta-learning <https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/> of the heterogeneous learners aimed to reduce the generalization error in the predictive models. It significantly lowers the barrier for the practitioners to apply heterogeneous ensemble learning techniques in an amateur fashion to their everyday predictive problems.
This package provides functionality to generate compound optimal designs for targeting the multiple experimental objectives directly, ensuring that the full set of research questions is answered as economically as possible. Designs can be found using point or coordinate exchange algorithms combining estimation, inference and lack-of-fit criteria that account for model inadequacy. Details and examples are given by Koutra et al. (2024) <doi:10.48550/arXiv.2412.17158>.
This package provides classes and calculation and plotting functions for metrology applications, including measurement uncertainty estimation and inter-laboratory metrology comparison studies.
The number of biological databases is growing rapidly, but different databases use different IDs to refer to the same biological entity. The inconsistency in IDs impedes the integration of various types of biological data. To resolve the problem, we developed MantaID', a data-driven, machine-learning based approach that automates identifying IDs on a large scale. The MantaID model's prediction accuracy was proven to be 99%, and it correctly and effectively predicted 100,000 ID entries within two minutes. MantaID supports the discovery and exploitation of ID patterns from large quantities of databases. (e.g., up to 542 biological databases). An easy-to-use freely available open-source software R package, a user-friendly web application, and API were also developed for MantaID to improve applicability. To our knowledge, MantaID is the first tool that enables an automatic, quick, accurate, and comprehensive identification of large quantities of IDs, and can therefore be used as a starting point to facilitate the complex assimilation and aggregation of biological data across diverse databases.
An R-Shiny module containing a "markdownInput". This input allows the user to write some markdown code and to preview the result. This input has been inspired by the "comment" window of <https://github.com/>.
Parametric modeling of M-quantile regression coefficient functions.
It's a Modern K-Means clustering algorithm which works for data of any number of dimensions, has no limit with the number of clusters expected, offers both methods with and without initial cluster centers, and can start with any initial cluster centers for the method with initial cluster centers.
This package implements a model-based clustering method for categorical life-course sequences relying on mixtures of exponential-distance models introduced by Murphy et al. (2021) <doi:10.1111/rssa.12712>. A range of flexible precision parameter settings corresponding to weighted generalisations of the Hamming distance metric are considered, along with the potential inclusion of a noise component. Gating covariates can be supplied in order to relate sequences to baseline characteristics and sampling weights are also accommodated. The models are fitted using the EM algorithm and tools for visualising the results are also provided.
Automate the explanatory analysis of machine learning predictive models. Generate advanced interactive model explanations in the form of a serverless HTML site with only one line of code. This tool is model-agnostic, therefore compatible with most of the black-box predictive models and frameworks. The main function computes various (instance and model-level) explanations and produces a customisable dashboard, which consists of multiple panels for plots with their short descriptions. It is possible to easily save the dashboard and share it with others. modelStudio facilitates the process of Interactive Explanatory Model Analysis introduced in Baniecki et al. (2023) <doi:10.1007/s10618-023-00924-w>.
Calculate the financial impact of using a churn model in terms of cost, revenue, profit and return on investment.
Designed for analyzing the Medical Information Mart for Intensive Care(MIMIC) dataset, a repository of freely accessible electronic health records. MIMER(MIMIC-enabled Research) package, offers a suite of data wrangling functions tailored specifically for preparing the dataset for research purposes, particularly in antimicrobial resistance(AMR) studies. It simplifies complex data manipulation tasks, allowing researchers to focus on their primary inquiries without being bogged down by wrangling complexities.