Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way.
With the deprecation of mocking capabilities shipped with testthat as of edition 3 it is left to third-party packages to replace this functionality, which in some test-scenarios is essential in order to run unit tests in limited environments (such as no Internet connection). Mocking in this setting means temporarily substituting a function with a stub that acts in some sense like the original function (for example by serving a HTTP response that has been cached as a file). The only exported function with_mock() is modeled after the eponymous testthat function with the intention of providing a drop-in replacement.
Constructs the normalized Laplacian matrix of a square matrix, returns the eigenvectors (singular vectors) and visualization of normalized Laplacian map.
Statistical framework for comparing sets of trees using hypothesis testing methods. Designed for transmission trees, phylogenetic trees, and directed acyclic graphs (DAGs), the package implements chi-squared tests to compare edge frequencies between sets and PERMANOVA to analyse topological dissimilarities with customisable distance metrics, following Anderson (2001) <doi:10.1111/j.1442-9993.2001.01070.pp.x>.
This package provides functions to prepare time priors for MCMCtree analyses in the PAML software from Yang (2007)<doi:10.1093/molbev/msm088> and plot time-scaled phylogenies from any Bayesian divergence time analysis. Most time-calibrated node prior distributions require user-specified parameters. The package provides functions to refine these parameters, so that the resulting prior distributions accurately reflect confidence in known, usually fossil, time information. These functions also enable users to visualise distributions and write MCMCtree ready input files. Additionally, the package supplies flexible functions to visualise age uncertainty on a plotted tree with using node bars, using branch widths proportional to the age uncertainty, or by plotting the full posterior distributions on nodes. Time-scaled phylogenetic plots can be visualised with absolute and geological timescales . All plotting functions are applicable with output from any Bayesian software, not just MCMCtree'.
This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.
This package provides a framework which should improve reproducibility and transparency in data processing. It provides functionality such as automatic meta data creation and management, rudimentary quality management, data caching, work-flow management and data aggregation. * The title is a wish not a promise. By no means we expect this package to deliver everything what is needed to achieve full reproducibility and transparency, but we believe that it supports efforts in this direction.
This package provides a system for Analysis of LSD when there is one missing observation. Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).
Model for simulating language evolution in terms of cultural evolution (Smith & Kirby (2008) <DOI:10.1098/rstb.2008.0145>; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) <DOI:10.1353/lan.1991.0021>, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aristar (1997) <DOI:10.1075/sl.21.2.04ari>, Lestrade (2010) <DOI:10.7282/T3ZG6R4S>), person indexing (Ariel 1999, Dahl (2000) <DOI:10.1075/fol.7.1.03dah>, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) <DOI:10.17169/langsci.b91.109>, Jackendoff 2002, Arbib (2015) <DOI:10.1002/9781118346136.ch27>) and interact through language games (Steels 1997). Over time, grammatical constructions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) <DOI:10.3765/bls.v13i0.1834>, Givon (1995) <DOI:10.1075/z.74>, Croft (2000), Saffran (2001) <DOI:10.1111/1467-8721.01243>, Heine & Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) <DOI:10.1057/9780230005853_5>, Levelt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) <DOI:10.15496/publikation-8640>, Lestrade (2015c) <DOI:10.1075/avt.32.08les>, and Lestrade (2016) <DOI:10.17617/2.2248195>), which reported on the results of preliminary versions, this package was announced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed.
This package performs monotonic binning of numeric risk factor in credit rating models (PD, LGD, EAD) development. All functions handle both binary and continuous target variable. Functions that use isotonic regression in the first stage of binning process have an additional feature for correction of minimum percentage of observations and minimum target rate per bin. Additionally, monotonic trend can be identified based on raw data or, if known in advance, forced by functions argument. Missing values and other possible special values are treated separately from so-called complete cases.
This package implements nonparametric bootstrap tests for detecting monotonicity in regression functions from Hall, P. and Heckman, N. (2000) <doi:10.1214/aos/1016120363> Includes tools for visualizing results using Nadaraya-Watson kernel regression and supports efficient computation with C++'. Tutorials and shiny application demo are available at <https://www.laylaparast.com/monotonicitytest> and <https://parastlab.shinyapps.io/MonotonicityTest>.
This package provides a metadata structure for clinical data analysis and reporting based on Analysis Data Model (ADaM) datasets. The package simplifies clinical analysis and reporting tool development by defining standardized inputs, outputs, and workflow. The package can be used to create analysis and reporting planning grid, mock table, and validated analysis and reporting results based on consistent inputs.
This package provides a set of functions for some multivariate analyses utilizing a structural equation modeling (SEM) approach through the OpenMx package. These analyses include canonical correlation analysis (CANCORR), redundancy analysis (RDA), and multivariate principal component regression (MPCR). It implements procedures discussed in Gu and Cheung (2023) <doi:10.1111/bmsp.12301>, Gu, Yung, and Cheung (2019) <doi:10.1080/00273171.2018.1512847>, and Gu et al. (2023) <doi:10.1080/00273171.2022.2141675>.
This package provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arXiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arXiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.
Two method new of multigroup and simulation of data. The first technique called multigroup PCA (mgPCA) this multivariate exploration approach that has the idea of considering the structure of groups and / or different types of variables. On the other hand, the second multivariate technique called Multigroup Dimensionality Reduction (MDR) it is another multivariate exploration method that is based on projections. In addition, a method called Single Dimension Exploration (SDE) was incorporated for to analyze the exploration of the data. It could help us in a better way to observe the behavior of the multigroup data with certain variables of interest.
This package performs multivariate meta-analysis for high-dimensional data to integrate and collectively analyse individual-level data from multiple studies, as well as to combine summary estimates. This approach accounts for correlation between outcomes, incorporates withinâ and betweenâ study variability, handles missing values, and uses shrinkage estimation to accommodate high dimensionality. The MetaHD R package provides access to our multivariate meta-analysis approach, along with a comprehensive suite of existing meta-analysis methods, including fixed-effects and random-effects models, Fisherâ s method, Stoufferâ s method, the weighted Z method, Lancasterâ s method, the weighted Fisherâ s method, and vote-counting approach. A detailed vignette with example datasets and code for data preparation and analysis is available at <https://alyshadelivera.github.io/MetaHD_vignette/>.
Matrix eQTL is designed for fast eQTL analysis on large datasets. Matrix eQTL can test for association between genotype and gene expression using linear regression with either additive or ANOVA genotype effects. The models can include covariates to account for factors as population stratification, gender, and clinical variables. It also supports models with heteroscedastic and/or correlated errors, false discovery rate estimation and separate treatment of local (cis) and distant (trans) eQTLs. For more details see Shabalin (2012) <doi:10.1093/bioinformatics/bts163>.
This package provides an interface to OpenML.org to list and download machine learning data, tasks and experiments. The OpenML objects can be automatically converted to mlr3 objects. For a more sophisticated interface with more upload options, see the OpenML package.
An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.
This package provides a novel framework to estimate mixed models via gradient boosting. The implemented functions are based on the mboost and lme4 packages, and the family range is therefore determined by lme4'. A correction mechanism for cluster-constant covariates is implemented, as well as estimation of the covariance of random effects. These methods are described in the accompanying publication; see <doi:10.1007/s11222-025-10612-y> for details.
Identifies the optimal number of clusters by calculating the similarity between two clustering methods at the same number of clusters using the corrected indices of Rand and Jaccard as described in Albatineh and Niewiadomska-Bugaj (2011). The number of clusters at which the index attain its maximum more frequently is a candidate for being the optimal number of clusters.
This package implements the generalization of the Shapiro-Wilk test for multivariate normality proposed by Villasenor-Alva and Gonzalez-Estrada (2009).
Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).
Build CPMs (cumulative probability models, also known as cumulative link models) to account for detection limits (both single and multiple detection limits) in response variables. Conditional quantiles and conditional CDFs can be calculated based on fitted models. The package implements methods described in Tian, Y., Li, C., Tu, S., James, N. T., Harrell, F. E., & Shepherd, B. E. (2022). "Addressing Detection Limits with Semiparametric Cumulative Probability Models". <arXiv:2207.02815>.