Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows the user to estimate transition probabilities for migratory animals between any two phases of the annual cycle, using a variety of different data types. Also quantifies the strength of migratory connectivity (MC), a standardized metric to quantify the extent to which populations co-occur between two phases of the annual cycle. Includes functions to estimate MC and the more traditional metric of migratory connectivity strength (Mantel correlation) incorporating uncertainty from multiple sources of sampling error. For cross-species comparisons, methods are provided to estimate differences in migratory connectivity strength, incorporating uncertainty. See Cohen et al. (2018) <doi:10.1111/2041-210X.12916>, Cohen et al. (2019) <doi:10.1111/ecog.03974>, Roberts et al. (2023) <doi:10.1002/eap.2788>, and Hostetler et al. (2025) <doi:10.1111/2041-210X.14467> for details on some of these methods.
Automatically estimate 11 effect size measures from a well-formatted dataset. Various other functions can help, for example, removing dependency between several effect sizes, or identifying differences between two datasets. This package is mainly designed to assist in conducting a systematic review with a meta-analysis but can be useful to any researcher interested in estimating an effect size.
Some enhancements, extensions and additions to the facilities of the recommended MASS package that are useful mainly for teaching purposes, with more convenient default settings and user interfaces. Key functions from MASS are imported and re-exported to avoid masking conflicts. In addition we provide some additional functions mainly used to illustrate coding paradigms and techniques, such as Gramm-Schmidt orthogonalisation and generalised eigenvalue problems.
Enables us to use the functions of the package magick interactively.
This package provides methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.
Rudimentary functions for sampling and calculating density from the matrix-variate variance-gamma distribution.
This package provides tools for creating and issuing nicely-formatted text within R diagnostic messages and those messages given during warnings and errors. The formatting of the messages can be customized using templating features. Issues with singular and plural forms can be handled through specialized syntax.
The mlrMBO package can ordinarily not be used for optimization within mlr3', because of incompatibilities of their respective class systems. mlrintermbo offers a compatibility interface that provides mlrMBO as an mlr3tuning Tuner object, for tuning of machine learning algorithms within mlr3', as well as a bbotk Optimizer object for optimization of general objective functions using the bbotk black box optimization framework. The control parameters of mlrMBO are faithfully reproduced as a paradox ParamSet'.
Computes the third multivariate cumulant of either the raw, centered or standardized data. Computes the main measures of multivariate skewness, together with their bootstrap distributions. Finally, computes the least skewed linear projections of the data.
Fitting multivariate response models with random effects on one or two levels; whereby the (one-dimensional) random effect represents a latent variable approximating the multivariate space of outcomes, after possible adjustment for covariates. The method is particularly useful for multivariate, highly correlated outcome variables with unobserved heterogeneities. Applications include regression with multivariate responses, as well as multivariate clustering or ranking problems. See Zhang and Einbeck (2024) <doi:10.1007/s42519-023-00357-0>.
Calculates and differentiates probabilities and density of (conditional) multivariate normal distribution and Gaussian copula (with various marginal distributions) using methods described in A. Genz (2004) <doi:10.1023/B:STCO.0000035304.20635.31>, A. Genz, F. Bretz (2009) <doi:10.1007/978-3-642-01689-9>, H. I. Gassmann (2003) <doi:10.1198/1061860032283> and E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>.
This package provides the Augmented Dickey-Fuller test and its variations to check the existence of bubbles (explosive behavior) for time series, based on the article by Peter C. B. Phillips, Shuping Shi and Jun Yu (2015a) <doi:10.1111/iere.12131>. Some functions may take a while depending on the size of the data used, or the number of Monte Carlo replications applied.
This package provides a variety of functions useful for data analysis, selection, manipulation, and graphics.
This group of functions simplifies the creation of linked micromap plots. Please see <https://www.jstatsoft.org/v63/i02/> for additional details.
This package provides tools to create a layout for figures made of multiple panels, and to fill the panels with base, lattice', ggplot2 and ComplexHeatmap plots, grobs, as well as content from all image formats supported by ImageMagick (accessed through magick').
To perform main effect matrix factor model (MEFM) estimation for a given matrix time series as described in Lam and Cen (2024) <doi:10.48550/arXiv.2406.00128>. Estimation of traditional matrix factor models is also supported. Supplementary functions for testing MEFM over factor models are included.
This package provides a simple function, mwsApp(), that runs a shiny app spanning multiple, connected windows. This uses all standard shiny conventions, and depends only on the shiny package.
Simulate forest hydrology, forest function and dynamics over landscapes [De Caceres et al. (2015) <doi:10.1016/j.agrformet.2015.06.012>]. Parallelization is allowed in several simulation functions and simulations may be conducted including spatial processes such as lateral water transfer and seed dispersal.
This package provides a simple and the early stage package for matrix profile based on the paper of Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh (2016) <DOI:10.1109/ICDM.2016.0179>. This package calculates all-pairs-similarity for a given window size for time series data.
This package contains functions that allow Bayesian meta-analysis (1) with binomial data, counts(y) and total counts (n) or, (2) with user-supplied point estimates and associated variances. Case (1) provides an analysis based on the logit transformation of the sample proportion. This methodology is also appropriate for combining data from sample surveys and related sources. The functions can calculate the corresponding similarity matrix. More details can be found in Cahoy and Sedransk (2023), Cahoy and Sedransk (2022) <doi:10.1007/s42519-018-0027-2>, Evans and Sedransk (2001) <doi:10.1093/biomet/88.3.643>, and Malec and Sedransk (1992) <doi:10.1093/biomet/79.3.593>.
To assist biological researchers in assembling taxonomically and marker focused molecular sequence data sets. MACER accepts a list of genera as a user input and uses NCBI-GenBank and BOLD as resources to download and assemble molecular sequence datasets. These datasets are then assembled by marker, aligned, trimmed, and cleaned. The use of this package allows the publication of specific parameters to ensure reproducibility. The MACER package has four core functions and an example run through using all of these functions can be found in the associated repository <https://github.com/rgyoung6/MACER_example>.
Convert mouse genome positions between the build 39 physical map and the genetic map of Cox et al. (2009) <doi:10.1534/genetics.109.105486>.
This package provides tools for animal movement modelling using hidden Markov models. These include processing of tracking data, fitting hidden Markov models to movement data, visualization of data and fitted model, decoding of the state process, etc. <doi:10.1111/2041-210X.12578>.
This package provides a leadership-inference framework for multivariate time series. The framework for multiple-faction-leadership inference from coordinated activities or mFLICA uses a notion of a leader as an individual who initiates collective patterns that everyone in a group follows. Given a set of time series of individual activities, our goal is to identify periods of coordinated activity, find factions of coordination if more than one exist, as well as identify leaders of each faction. For each time step, the framework infers following relations between individual time series, then identifying a leader of each faction whom many individuals follow but it follows no one. A faction is defined as a group of individuals that everyone follows the same leader. mFLICA reports following relations, leaders of factions, and members of each faction for each time step. Please see Chainarong Amornbunchornvej and Tanya Berger-Wolf (2018) <doi:10.1137/1.9781611975321.62> for methodology and Chainarong Amornbunchornvej (2021) <doi:10.1016/j.softx.2021.100781> for software when referring to this package in publications.