Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements an estimator for relative risk based on the median unbiased estimator. The relative risk estimator is well defined and performs satisfactorily for a wide range of data configurations. The details of the method are available in Carter et al (2010) <doi:10.1111/j.1467-9876.2010.00711.x>.
This package provides various functions for parameter estimation of one-dimensional stable distributions and their mixtures. It implements a diverse set of estimation methods, including quantile-based approaches, regression methods based on the empirical characteristic function (empirical, kernel, and recursive), and maximum likelihood estimation. For mixture models, it provides stochastic expectationâ maximization (SEM) algorithms and Bayesian estimation methods using sampling and importance sampling to overcome the long burn-in period of Markov Chain Monte Carlo (MCMC) strategies. The package also includes tools and statistical tests for analyzing whether a dataset follows a stable distribution. Some of the implemented methods are described in Hajjaji, O., Manou-Abi, S. M., and Slaoui, Y. (2024) <doi:10.1080/02664763.2024.2434627>.
This package provides a set of tools for likelihood-based estimation, model selection and testing of two- and three-range shift and migration models for animal movement data as described in Gurarie et al. (2017) <doi: 10.1111/1365-2656.12674>. Provided movement data (X, Y and Time), including irregularly sampled data, functions estimate the time, duration and location of one or two range shifts, as well as the ranging area and auto-correlation structure of the movment. Tests assess, for example, whether the shift was "significant", and whether a two-shift migration was a true return migration.
Solve scalar-on-function linear models, including generalized linear mixed effect model and quantile linear regression model, and bias correction estimation methods due to measurement error. Details about the measurement error bias correction methods, see Luan et al. (2023) <doi:10.48550/arXiv.2305.12624>, Tekwe et al. (2022) <doi:10.1093/biostatistics/kxac017>, Zhang et al. (2023) <doi:10.5705/ss.202021.0246>, Tekwe et al. (2019) <doi:10.1002/sim.8179>.
This package performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.
Converts results from the manymome package, presented in Cheung and Cheung (2023) <doi:10.3758/s13428-023-02224-z>, to publication-ready tables.
This package provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) <doi:10.1201/9780429192692>.
This package provides access to well-documented medical datasets for teaching. Featuring several from the Teaching of Statistics in the Health Sciences website <https://www.causeweb.org/tshs/category/dataset/>, a few reconstructed datasets of historical significance in medical research, some reformatted and extended from existing R packages, and some data donations.
This package provides functions for MultiDimensional Feature Selection (MDFS): calculating multidimensional information gains, scoring variables, finding important variables, plotting selection results. This package includes an optional CUDA implementation that speeds up information gain calculation using NVIDIA GPGPUs. R. Piliszek et al. (2019) <doi:10.32614/RJ-2019-019>.
This package provides a convenient interface in OpenMx for building Estabrook's (2015) <doi:10.1037/a0034523> Measurement Model of Derivatives (MMOD).
Family Planning programs and initiatives typically use nationally representative surveys to estimate key indicators of a countryâ s family planning progress. However, in recent years, routinely collected family planning services data (Service Statistics) have been used as a supplementary data source to bridge gaps in the surveys. The use of service statistics comes with the caveat that adjustments need to be made for missing private sector contributions to the contraceptive method supply chain. Evaluating the supply source of modern contraceptives often relies on Demographic Health Surveys (DHS), where many countries do not have recent data beyond 2015/16. Fortunately, in the absence of recent surveys we can rely on statistical model-based estimates and projections to fill the knowledge gap. We present a Bayesian, hierarchical, penalized-spline model with multivariate-normal spline coefficients, to account for across method correlations, to produce country-specific,annual estimates for the proportion of modern contraceptive methods coming from the public and private sectors. This package provides a quick and convenient way for users to access the DHS modern contraceptive supply share data at national and subnational administration levels, estimate, evaluate and plot annual estimates with uncertainty for a sample of low- and middle-income countries. Methods for the estimation of method supply shares at the national level are described in Comiskey, Alkema, Cahill (2022) <arXiv:2212.03844>.
This package provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.
This package provides a toolbox to train a single sample classifier that uses in-sample feature relationships. The relationships are represented as feature1 < feature2 (e.g. gene1 < gene2). We provide two options to go with. First is based on switchBox package which uses Top-score pairs algorithm. Second is a novel implementation based on random forest algorithm. For simple problems we recommend to use one-vs-rest using TSP option due to its simplicity and for being easy to interpret. For complex problems RF performs better. Both lines filter the features first then combine the filtered features to make the list of all the possible rules (i.e. rule1: feature1 < feature2, rule2: feature1 < feature3, etc...). Then the list of rules will be filtered and the most important and informative rules will be kept. The informative rules will be assembled in an one-vs-rest model or in an RF model. We provide a detailed description with each function in this package to explain the filtration and training methodology in each line. Reference: Marzouka & Eriksson (2021) <doi:10.1093/bioinformatics/btab088>.
Helps calculate statistical values commonly used in meta-analysis. It provides several methods to compute different forms of standardized mean differences, as well as other values such as standard errors and standard deviations. The methods used in this package are described in the following references: Altman D G, Bland J M. (2011) <doi:10.1136/bmj.d2090> Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) <doi:10.1002/9780470743386.ch4> Chinn S. (2000) <doi:10.1002/1097-0258(20001130)19:22%3C3127::aid-sim784%3E3.0.co;2-m> Cochrane Handbook (2011) <https://handbook-5-1.cochrane.org/front_page.htm> Cooper, H., Hedges, L. V., & Valentine, J. C. (2009) <https://psycnet.apa.org/record/2009-05060-000> Cohen, J. (1977) <https://psycnet.apa.org/record/1987-98267-000> Ellis, P.D. (2009) <https://www.psychometrica.de/effect_size.html> Goulet-Pelletier, J.-C., & Cousineau, D. (2018) <doi:10.20982/tqmp.14.4.p242> Hedges, L. V. (1981) <doi:10.2307/1164588> Hedges L. V., Olkin I. (1985) <doi:10.1016/C2009-0-03396-0> Murad M H, Wang Z, Zhu Y, Saadi S, Chu H, Lin L et al. (2023) <doi:10.1136/bmj-2022-073141> Mayer M (2023) <https://search.r-project.org/CRAN/refmans/confintr/html/ci_proportion.html> Stackoverflow (2014) <https://stats.stackexchange.com/questions/82720/confidence-interval-around-binomial-estimate-of-0-or-1> Stackoverflow (2018) <https://stats.stackexchange.com/q/338043>.
Useful functions to analyze proteomic workflows including number of identifications, data completeness, missed cleavages, quantitative and retention time precision etc. Various software outputs are supported such as ProteomeDiscoverer', Spectronaut', DIA-NN and MaxQuant'.
This package provides functions for diagnostic meta-analysis. Next to basic analysis and visualization the bivariate Model of Reitsma et al. (2005) that is equivalent to the HSROC of Rutter & Gatsonis (2001) can be fitted. A new approach based to diagnostic meta-analysis of Holling et al. (2012) is also available. Standard methods like summary, plot and so on are provided.
This is an add-on package to the monobin package that simplifies its use. It provides shiny-based user interface (UI) that is especially handy for less experienced R users as well as for those who intend to perform quick scanning of numeric risk factors when building credit rating models. The additional functions implemented in monobinShiny that do no exist in monobin package are: descriptive statistics, special case and outliers imputation. The function descriptive statistics is exported and can be used in R sessions independently from the user interface, while special case and outlier imputation functions are written to be used with shiny UI.
Evaluate hypotheses concerning the distribution of multinomial proportions using bridge sampling. The bridge sampling routine is able to compute Bayes factors for hypotheses that entail inequality constraints, equality constraints, free parameters, and mixtures of all three. These hypotheses are tested against the encompassing hypothesis, that all parameters vary freely or against the null hypothesis that all category proportions are equal. For more information see Sarafoglou et al. (2020) <doi:10.31234/osf.io/bux7p>.
The multiple instance data set consists of many independent subjects (called bags) and each subject is composed of several components (called instances). The outcomes of such data set are binary or categorical responses, and, we can only observe the subject-level outcomes. For example, in manufacturing processes, a subject is labeled as "defective" if at least one of its own components is defective, and otherwise, is labeled as "non-defective". The milr package focuses on the predictive model for the multiple instance data set with binary outcomes and performs the maximum likelihood estimation with the Expectation-Maximization algorithm under the framework of logistic regression. Moreover, the LASSO penalty is attached to the likelihood function for simultaneous parameter estimation and variable selection.
Routines for assessing multivariate normality. Implements three Wald's type chi-squared tests; non-parametric Anderson-Darling and Cramer-von Mises tests; Doornik-Hansen test, Royston test and Henze-Zirkler test.
The goal of mammalcol is to provide easy access to a meticulously structured dataset of Colombian mammal species in R. The 2025 update includes comprehensive, detailed species accounts, and distribution information.
Econometric analysis of multiple-input-multiple-output production technologies with ray-based input distance functions as suggested by Price and Henningsen (2022): "A Ray-Based Input Distance Function to Model Zero-Valued Output Quantities: Derivation and an Empirical Application", <https://ideas.repec.org/p/foi/wpaper/2022_03.html>.
Create and integrate thematic maps in your workflow. This package helps to design various cartographic representations such as proportional symbols, choropleth or typology maps. It also offers several functions to display layout elements that improve the graphic presentation of maps (e.g. scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.
This package implements likelihood inference based on higher order approximations for linear nonnormal regression models.