Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a nature-inspired metaheuristic algorithm based on the echolocation behavior of microbats that uses frequency tuning to optimize problems in both continuous and discrete dimensions. This R package makes it easy to implement the standard bat algorithm on any user-supplied function. The algorithm was first developed by Xin-She Yang in 2010 (<DOI:10.1007/978-3-642-12538-6_6>, <DOI:10.1109/CINTI.2014.7028669>).
Various utilities for the Multiplicative Multinomial distribution.
Sharing statistical methods or simulation frameworks through shiny applications often requires workflows for handling data. To help save and display simulation results, the postgresUI() and postgresServer() functions in mmints help with persistent data storage using a PostgreSQL database. The mmints package also offers data upload functionality through the csvUploadUI() and csvUploadServer() functions which allow users to upload data, view variables and their types, and edit variable types before fitting statistical models within the shiny application. These tools aim to enhance efficiency and user interaction in shiny based statistical and simulation applications.
This package provides tools for motif analysis in multi-level networks. Multi-level networks combine multiple networks in one, e.g. social-ecological networks. Motifs are small configurations of nodes and edges (subgraphs) occurring in networks. motifr can visualize multi-level networks, count multi-level network motifs and compare motif occurrences to baseline models. It also identifies contributions of existing or potential edges to motifs to find critical or missing edges. The package is in many parts an R wrapper for the excellent SESMotifAnalyser Python package written by Tim Seppelt.
Generates blocked designs for mixed-level factorial experiments for a given block size. Internally, it uses finite-field based, collapsed, and heuristic methods to construct block structures that minimize confounding between block effects and factorial effects. The package creates the full treatment combination table, partitions runs into blocks, and computes detailed confounding diagnostics for main effects and two-factor interactions. It also checks orthogonal factorial structure (OFS) and computes efficiencies of factorial effects using the methods of Nair and Rao (1948) <doi:10.1111/j.2517-6161.1948.tb00005.x>. When OFS is not satisfied but the design has equal treatment replications and equal block sizes, a general method based on the C-matrix and custom contrast vectors is used to compute efficiencies. The output includes the generated design, finite-field metadata, confounding summaries, OFS diagnostics, and efficiency results.
This package provides a method to impute the missingness in categorical data. Details see the paper <doi:10.4310/SII.2020.v13.n1.a2>.
This package contains functions for performing Mokken scale analysis on test and questionnaire data. It includes an automated item selection algorithm, and various checks of model assumptions.
Matching with string distance has never been easier! messy.cats contains various functions that employ string distance tools in order to make data management easier for users working with categorical data. Categorical data, especially user inputted categorical data that often tends to be plagued by typos, can be difficult to work with. messy.cats aims to provide functions that make cleaning categorical data simple and easy.
Analyse and visualise multi electrode array data at the single electrode and whole well level, downstream of AxIS Navigator 3.6.2 Software processing. Compare bursting parameters between time intervals and recordings using the bar chart visualisation functions. Compatible with 12- and 24- well plates.
Fits a Bayesian Regression Model for multivariate count data. This model assumes that the data is distributed according to the Conway-Maxwell-Poisson distribution, and for each response variable it is associate different covariates. This model allows to account for correlations between the counts by using latent effects based on the Chib and Winkelmann (2001) <http://www.jstor.org/stable/1392277> proposal.
Implementation of methods for minimizing ill-conditioned problems. Currently only includes regularized (quasi-)newton optimization (Kanzow and Steck et al. (2023), <doi:10.1007/s12532-023-00238-4>).
Estimates models that extend the standard GLM to take misclassification into account. The models require side information from a secondary data set on the misclassification process, i.e. some sort of misclassification probabilities conditional on some common covariates. A detailed description of the algorithm can be found in Dlugosz, Mammen and Wilke (2015) <https://ftp.zew.de/pub/zew-docs/dp/dp15043.pdf>.
Matching algorithm based on network-flow structure. Users are able to modify the emphasis on three different optimization goals: two different distance measures and the number of treated units left unmatched. The method is proposed by Pimentel and Kelz (2019) <doi:10.1080/01621459.2020.1720693>. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
This package provides a collection of statistical tests for the detection of differential item functioning (DIF) in multistage tests. Methods entail logistic regression, an adaptation of the simultaneous item bias test (SIBTEST), and various score-based tests. The presented tests provide itemwise test for DIF along categorical, ordinal or metric covariates. Methods for uniform and non-uniform DIF effects are available depending on which method is used.
Multidimensional unfolding using Schoenemann's algorithm for metric and Procrustes rotation of unfolding results.
The goal of MRMCbinary is to compare the performance of diagnostic tests (i.e., sensitivity and specificity) for binary outcomes in multi-reader multi-case (MRMC) studies. It is based on conditional logistic regression and Cochranâ s Q test (or McNemarâ s test when the number of modalities is equal to 2).
This package creates modules inline or from a file. Modules can contain any R object and be nested. Each module have their own scope and package "search path" that does not interfere with one another or the user's working environment.
This package provides an R wrapper for the MD4C (Markdown for C') library. Functions exist for parsing markdown ('CommonMark compliant) along with support for other common markdown extensions (e.g. GitHub flavored markdown, LaTeX equation support, etc.). The package also provides a number of higher level functions for exploring and manipulating markdown abstract syntax trees as well as translating and displaying the documents.
Perform a mail merge (mass email) using the message defined in markdown, the recipients in a csv file, and gmail as the mailing engine. With this package you can parse markdown documents as the body of email, and the yaml header to specify the subject line of the email. Any braces in the email will be encoded with glue::glue()'. You can preview the email in the RStudio viewer pane, and send (draft) email using gmailr'.
This package provides a GUI with which users can construct and interact with Multibiplot Analysis.
Selects bandwidth for the kernel density estimator with minimum distance method as proposed by Devroye and Lugosi (1996). The minimum distance method directly selects the optimal kernel density estimator from countably infinite kernel density estimators and indirectly selects the optimal bandwidth. This package selects the optimal bandwidth from finite kernel density estimators.
Computes multiple correlation coefficient when the data matrix is given and tests its significance.
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.
This package provides a set of tools for likelihood-based estimation, model selection and testing of two- and three-range shift and migration models for animal movement data as described in Gurarie et al. (2017) <doi: 10.1111/1365-2656.12674>. Provided movement data (X, Y and Time), including irregularly sampled data, functions estimate the time, duration and location of one or two range shifts, as well as the ranging area and auto-correlation structure of the movment. Tests assess, for example, whether the shift was "significant", and whether a two-shift migration was a true return migration.