This package provides a framework for the creation and use of Neural ordinary differential equations with the tensorflow and keras packages. The idea of Neural ordinary differential equations comes from Chen et al. (2018) <doi:10.48550/arXiv.1806.07366>, and presents a novel way of learning and solving differential systems.
Estimates joint marker (longitudinal) and survival (time-to-event) outcomes using variational approximations. The package supports multivariate markers allowing for correlated error terms and multiple types of survival outcomes which may be left-truncated, right-censored, and recurrent. Time-varying fixed and random covariate effects are supported along with non-proportional hazards.
Package for the access and distribution of long-term lake datasets from lakes in the Adirondack Park, northern New York state. Includes a wide variety of physical, chemical, and biological parameters from 28 lakes. Data are from multiple collection organizations and have been harmonized in both time and space for ease of reuse.
Lite interface for finding locations of addresses or businesses around the world using the ArcGIS REST API service <https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm>. Address text can be converted to location candidates and a location can be converted into an address. No API key required.
This package implements a bootstrap aggregated (bagged) version of the k-nearest neighbors survival probability prediction method (Lowsky et al. 2013). In addition to the bootstrapping of training samples, the features can be subsampled in each baselearner to break the correlation between them. The Rcpp package is used to speed up the computation.
This package implements the distribution-free goodness-of-fit regression test for the mean structure of parametric models introduced in Khmaladze (2021) <doi:10.1007/s10463-021-00786-3>. The test is implemented for general functions with minimal distributional assumptions as well as common models (e.g., lm, glm) with the usual assumptions.
Hospital machine learning and ai data analysis workflow tools, modeling, and automations. This library provides many useful tools to review common administrative hospital data. Some of these include predicting length of stay, and readmits. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.
Mine metrics on common places on the web through the power of their APIs (application programming interfaces). It also helps make the data in a format that is easily used for a dashboard or other purposes. There is an associated dashboard template and tutorials that are underdevelopment that help you fully utilize metricminer'.
Turning point method is a method proposed by Choi (1990) <doi:10.2307/2531453> to estimate 50 percent effective dose (ED50) in the study of drug sensitivity. The method has its own advantages for that it can provide robust ED50 estimation. This package contains the modified function of Choi's turning point method.
Allows search and visualisation of a collection of uniformly processed skeletal transcriptomic datasets. Includes methods to identify datasets where genes of interest are differentially expressed and find datasets with a similar gene expression pattern to a query dataset Soul J, Hardingham TE, Boot-Handford RP, Schwartz JM (2019) <doi:10.1093/bioinformatics/bty947>.
This package is a feature selection package of the mlr3 ecosystem. It selects the optimal feature set for any mlr3 learner. The package works with several optimization algorithms e.g. random search, Recursive feature elimination, and genetic search. Moreover, it can automatically optimize learners and estimate the performance of optimized feature sets with nested resampling.
This package contains functions to implement the methodology and considerations laid out by Marks et al. in the article "Measuring abnormality in high dimensional spaces: applications in biomechanical gait analysis". Using high-dimensional datasets to measure a subject's overall level of abnormality as compared to a reference population is often needed in outcomes research.
This package is a comprehensive visualization tool specifically designed for exploring phylomorphospace. It not only simplifies the process of generating phylomorphospace, but also enhances it with the capability to add graphic layers to the plot with grammar of graphics to create fully annotated phylomorphospaces. It also provide some utilities to help interpret evolutionary patterns.
immunoClust is a model based clustering approach for Flow Cytometry samples. The cell-events of single Flow Cytometry samples are modelled by a mixture of multinominal normal- or t-distributions. The cell-event clusters of several samples are modelled by a mixture of multinominal normal-distributions aiming stable co-clusters across these samples.
scoreInvHap can get the samples inversion status of known inversions. scoreInvHap uses SNP data as input and requires the following information about the inversion: genotype frequencies in the different haplotypes, R2 between the region SNPs and inversion status and heterozygote genotypes in the reference. The package include this data for 21 inversions.
signifinder is an R package for computing and exploring a compendium of tumor signatures. It allows to compute a variety of signatures coming from public literature, based on gene expression values, and return single-sample (-cell/-spot) scores. Currently, signifinder collects more than 70 distinct signatures, relating to multiple tumors and multiple cancer processes.
Various tools for inferring causal models from observational data. The package includes an implementation of the temporal Peter-Clark (TPC) algorithm. Petersen, Osler and Ekstrøm (2021) <doi:10.1093/aje/kwab087>. It also includes general tools for evaluating differences in adjacency matrices, which can be used for evaluating performance of causal discovery procedures.
This package creates the "table one" of bio-medical papers. Fill it with your data and the name of the variable which you'll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML. It also allows you to visualize all your data with graphic representation.
Offers a set of functions to easily download and clean Brazilian electoral data from the Superior Electoral Court and CepespData websites. Among other features, the package retrieves data on local and federal elections for all positions (city councilor, mayor, state deputy, federal deputy, governor, and president) aggregated by state, city, and electoral zones.
This package provides tools to compute the neural fragility matrix from intracranial electrocorticographic (iEEG) recordings, enabling the analysis of brain dynamics during seizures. The package implements the method described by Li et al. (2017) <doi:10.23919/ACC.2017.7963378> and includes functions for data preprocessing ('Epoch'), fragility computation ('calcAdjFrag'), and visualization.
Allows users to fit a cosinor model using the glmmTMB framework. This extends on existing cosinor modeling packages, including cosinor and circacompare', by including a wide range of available link functions and the capability to fit mixed models. The cosinor model is described by Cornelissen (2014) <doi:10.1186/1742-4682-11-16>.
This package implements Heckman selection models using a Bayesian approach via Stan and compares the performance of normal, Studentâ s t, and contaminated normal distributions in addressing complexities and selection bias (Heeju Lim, Victor E. Lachos, and Victor H. Lachos, Bayesian analysis of flexible Heckman selection models using Hamiltonian Monte Carlo, 2025, under submission).
This package provides a collection of Irucka Embry's miscellaneous USGS data sets (USGS Parameter codes with fixed values, USGS global time zone codes, and US Air Force Global Engineering Weather Data). Irucka created these data sets while a Cherokee Nation Technology Solutions (CNTS) United States Geological Survey (USGS) Contractor and/or USGS employee.
This package provides tools specifically designed for analyzing longitudinal microbiome data. This tool integrates seven functional modules, providing a systematic framework for microbiome time-series analysis. For more details on inferences involving interspecies interactions see Fisher (2014) <doi:10.1371/journal.pone.0102451>. Details on this package are also described in an unpublished manuscript.