Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a multi action button for usage in shiny applications.
Clustering of data under a non-ignorable missingness mechanism. Clustering is achieved by a semi-parametric mixture model and missingness is managed by using the pattern-mixture approach. More details of the approach are available in Du Roy de Chaumaray et al. (2020) <arXiv:2009.07662>.
This package provides methods for model-based clustering of multinomial counts under the presence of covariates using mixtures of multinomial logit models, as implemented in Papastamoulis (2023) <DOI:10.1007/s11634-023-00547-5>. These models are estimated under a frequentist as well as a Bayesian setup using the Expectation-Maximization algorithm and Markov chain Monte Carlo sampling (MCMC), respectively. The (unknown) number of clusters is selected according to the Integrated Completed Likelihood criterion (for the frequentist model), and estimating the number of non-empty components using overfitting mixture models after imposing suitable sparse prior assumptions on the mixing proportions (in the Bayesian case), see Rousseau and Mengersen (2011) <DOI:10.1111/j.1467-9868.2011.00781.x>. In the latter case, various MCMC chains run in parallel and are allowed to switch states. The final MCMC output is suitably post-processed in order to undo label switching using the Equivalence Classes Representatives (ECR) algorithm, as described in Papastamoulis (2016) <DOI:10.18637/jss.v069.c01>.
This package implements structural estimators to correct for the sample selection bias from observed outcomes in matching markets. This includes one-sided matching of agents into groups (Klein, 2015) <https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1521.pdf> as well as two-sided matching of students to schools (Aue et al., 2020) <https://ftp.zew.de/pub/zew-docs/dp/dp20032.pdf>. The package also contains algorithms to find stable matchings in the three most common matching problems: the stable roommates problem (Irving, 1985) <doi:10.1016/0196-6774(85)90033-1>, the college admissions problem (Gale and Shapley, 1962) <doi:10.2307/2312726>, and the house allocation problem (Shapley and Scarf, 1974) <doi:10.1016/0304-4068(74)90033-0>.
Estimate diagnostic classification models (also called cognitive diagnostic models) with Stan'. Diagnostic classification models are confirmatory latent class models, as described by Rupp et al. (2010, ISBN: 978-1-60623-527-0). Automatically generate Stan code for the general loglinear cognitive diagnostic diagnostic model proposed by Henson et al. (2009) <doi:10.1007/s11336-008-9089-5> and other subtypes that introduce additional model constraints. Using the generated Stan code, estimate the model evaluate the model's performance using model fit indices, information criteria, and reliability metrics.
Life expectancy is highly correlated over time among countries and between males and females. These associations can be used to improve forecasts. Here we have implemented a method for forecasting female life expectancy based on analysis of the gap between female life expectancy in a country compared with the record level of female life expectancy in the world. Second, to forecast male life expectancy, the gap between male life expectancy and female life expectancy in a country is analysed. We named this method the Double-Gap model. For a detailed description of the method see Pascariu et al. (2018). <doi:10.1016/j.insmatheco.2017.09.011>.
Similarity plots based on correlation and median absolute deviation (MAD); adjusting colors for heatmaps; aggregate technical replicates; calculate pairwise fold-changes and log fold-changes; compute one- and two-way ANOVA; simplified interface to package limma (Ritchie et al. (2015), <doi:10.1093/nar/gkv007> ) for moderated t-test and one-way ANOVA; Hamming and Levenshtein (edit) distance of strings as well as optimal alignment scores for global (Needleman-Wunsch) and local (Smith-Waterman) alignments with constant gap penalties (Merkl and Waack (2009), ISBN:978-3-527-32594-8).
Generalized low-rank models for mixed and incomplete data frames. The main function may be used for dimensionality reduction of imputation of numeric, binary and count data (simultaneously). Main effects such as column means, group effects, or effects of row-column side information (e.g. user/item attributes in recommendation system) may also be modelled in addition to the low-rank model. Geneviève Robin, Olga Klopp, Julie Josse, à ric Moulines, Robert Tibshirani (2018) <arXiv:1806.09734>.
This package creates a spectroscopy guideline with a highly accurate prediction model for soil properties using machine learning or deep learning algorithms such as LASSO, Random Forest, Cubist, etc., and decide which algorithm generates the best model for different soil types.
This is a R implementation of "Minimum SNPs" software as described in "Price E.P., Inman-Bamber, J., Thiruvenkataswamy, V., Huygens, F and Giffard, P.M." (2007) <doi:10.1186/1471-2105-8-278> "Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants.".
Several classes for moment-based models are defined. The classes are defined for moment conditions derived from a single equation or a system of equations. The conditions can also be expressed as functions or formulas. Several methods are also offered to facilitate the development of different estimation techniques. The methods that are currently provided are the Generalized method of moments (Hansen 1982; <doi:10.2307/1912775>), for single equations and systems of equation, and the Generalized Empirical Likelihood (Smith 1997; <doi:10.1111/j.0013-0133.1997.174.x>, Kitamura 1997; <doi:10.1214/aos/1069362388>, Newey and Smith 2004; <doi:10.1111/j.1468-0262.2004.00482.x>, and Anatolyev 2005 <doi:10.1111/j.1468-0262.2005.00601.x>). Some work is being done to add tools to deal with weak and/or many instruments. This includes K-Class estimators (Limited Information Maximum Likelihood and Fuller), Anderson and Rubin statistic test, etc.
This package provides tools for analyzing Marshall-Olkin shock models semi-independent time. It includes interactive shiny applications for exploring copula-based dependence structures, along with functions for modeling and visualization. The methods are based on Mijanovic and Popovic (2024, submitted) "An R package for Marshall-Olkin shock models with semi-independent times.".
Simple helpers for matrix multiplication on data.frames. These allow for more concise code during low level mathematical operations, and help ensure code is more easily read, understood, and serviced.
Uses the metadata information stored in metacore objects to check and build metadata associated columns.
Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.
This package provides a collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the OpenMx and lavaan packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.
This package provides a collection of tools for analyzing significance of Markowitz portfolios, using the delta method on the second moment matrix, <arxiv:1312.0557>.
Diagnostics of list of codes based on concepts from the domains measurement and observation. This package works for data mapped to the Observational Medical Outcomes Partnership Common Data Model.
This is the core functions needed by the tsmp package. The low level and carefully checked mathematical functions are here. These are implementations of the Matrix Profile concept that was created by CS-UCR <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>.
Implementations of an estimator for the multivariate regression association measure (MRAM) proposed in Shih and Chen (2025) <in revision> and its associated variable selection algorithm. The MRAM quantifies the predictability of a random vector Y from a random vector X given a random vector Z. It takes the maximum value 1 if and only if Y is almost surely a measurable function of X and Z, and the minimum value of 0 if Y is conditionally independent of X given Z. The MRAM generalizes the Kendall's tau copula correlation ratio proposed in Shih and Emura (2021) <doi:10.1016/j.jmva.2020.104708> by employing the spatial sign function. The estimator is based on the nearest neighbor method, and the associated variable selection algorithm is adapted from the feature ordering by conditional independence (FOCI) algorithm of Azadkia and Chatterjee (2021) <doi:10.1214/21-AOS2073>. For further details, see the paper Shih and Chen (2025) <in revision>.
Extends the mlr3 ML framework with methods for spatial objects. Data storage and prediction are supported for packages terra', raster and stars'.
Fast imputations under the object-oriented programming paradigm. Moreover there are offered a few functions built to work with popular R packages such as data.table or dplyr'. The biggest improvement in time performance could be achieve for a calculation where a grouping variable have to be used. A single evaluation of a quantitative model for the multiple imputations is another major enhancement. A new major improvement is one of the fastest predictive mean matching in the R world because of presorting and binary search.
This package implements three bias-correction techniques from Battaglia et al. (2025 <doi:10.48550/arXiv.2402.15585>) to improve inference in regression models with covariates generated by AI or machine learning.