Software for performing the reduction, exploratory and model selection phases of the procedure proposed by Cox, D.R. and Battey, H.S. (2017) <doi:10.1073/pnas.1703764114> for sparse regression when the number of potential explanatory variables far exceeds the sample size. The software supports linear regression, likelihood-based fitting of generalized linear regression models and the proportional hazards model fitted by partial likelihood.
R Client for the Microsoft Cognitive Services Web Language Model REST API, including Break Into Words, Calculate Conditional Probability, Calculate Joint Probability, Generate Next Words, and List Available Models. A valid account MUST be registered at the Microsoft Cognitive Services website <https://www.microsoft.com/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for ggplot2 plotting methods for nlmixr2 objects.
Extends the Heckman selection framework to panel data with individual random effects. The first stage models participation via a panel Probit specification, while the second stage can take a panel linear, Probit, Poisson, or Poisson log-normal form. Model details are provided in Bailey and Peng (2025) <doi:10.2139/ssrn.5475626> and Peng and Van den Bulte (2024) <doi:10.1287/mnsc.2019.01897>.
Synthesize numeric, categorical, mixed and time series data. Data circumstances including mixed (or zero-inflated) distributions and missing data patterns are reproduced in the synthetic data. A single parameter allows balancing between high-quality synthetic data that represents correlations of the original data and lower quality but more privacy safe synthetic data without correlations. Tuning can be done per variable or for the whole dataset.
An integrated suite of tools for creating, maintaining, and reusing FAIR (Findable, Accessible, Interoperable, Reusable) theories. Designed to support transparent and collaborative theory development, the package enables users to formalize theories, track changes with version control, assess pre-empirical coherence, and derive testable hypotheses. Aligning with open science principles and workflows, theorytools facilitates the systematic improvement of theoretical frameworks and enhances their discoverability and usability.
Set of functions designed to help in the analysis of TDP sensors. Features includes dates and time conversion, weather data interpolation, daily maximum of tension analysis and calculations required to convert sap flow density data to sap flow rates at the tree and plot scale (For more information see : Granier (1985) <DOI:10.1051/forest:19850204> & Granier (1987) <DOI:10.1093/treephys/3.4.309>).
Tests the hypothesis that variances are homogeneous or not using bootstrap. The procedure uses a variance-based statistic, and is derived from a normal-theory test. The test equivalently expressed the hypothesis as a function of the log contrasts of the population variances. A box-type acceptance region is constructed to test the hypothesis. See Cahoy (2010) \doi10.1016/j.csda.2010.04.012.
Adding some at-present missing functionality, or functions unlikely to be added to the base xpose package. This includes some diagnostic plots that have been missing in translation from xpose4', but also some useful features that truly extend the capabilities of what can be done with xpose'. These extensions include the concept of a set of xpose objects, and diagnostics for likelihood-based models.
Blacksheep is a tool designed for outlier analysis in the context of pairwise comparisons in an effort to find distinguishing characteristics from two groups. This tool was designed to be applied for biological applications such as phosphoproteomics or transcriptomics, but it can be used for any data that can be represented by a 2D table, and has two sub populations within the table to compare.
The crisprVerse is a modular ecosystem of R packages developed for the design and manipulation of CRISPR guide RNAs (gRNAs). All packages share a common language and design principles. This package is designed to make it easy to install and load the crisprVerse packages in a single step. To learn more about the crisprVerse, visit <https://www.github.com/crisprVerse>.
The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements.
This package helps you create plots of p-values using single SNP and/or haplotype data. Main features of the package include options to display a linkage disequilibrium (LD) plot and the ability to plot multiple datasets simultaneously. Plots can be created using global and/or individual haplotype p-values along with single SNP p-values. Images are created as either PDF/EPS files.
This package adds distinctive yet unobtrusive geometric patterns where solid color fills are normally used. Patterned figures look just as professional when viewed by colorblind readers or when printed in black and white. The dozen included patterns can be customized in terms of scale, rotation, color, fill, line type, and line width. It is compatible with the ggplot2 package as well as grid graphics.
This package provides an XML-RPC client for Emacs capable of both synchronous and asynchronous method calls using the url package's async retrieval functionality. xml-rpc.el represents XML-RPC datatypes as Lisp values, automatically converting to and from the XML datastructures as needed, both for method parameters and return values, making using XML-RPC methods fairly transparent to the Lisp code.
The proposed event-driven approach for Bayesian two-stage single-arm phase II trial design is a novel clinical trial design and can be regarded as an extension of the SimonĂ¢ s two-stage design with the time-to-event endpoint. This design is motivated by cancer clinical trials with immunotherapy and molecularly targeted therapy, in which time-to-event endpoint is often a desired endpoint.
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
These experimental expression data (5 leukemic CLL B-lymphocyte of aggressive form from GSE39411', <doi:10.1073/pnas.1211130110>), after B-cell receptor stimulation, are used as examples by packages such as the Cascade one, a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In tropical algebra, the tropical sum of two numbers is their minimum and the tropical product of two numbers is their ordinary sum. For more information see also I. Simon (1988) Recognizable sets with multiplicities in the tropical semi ring: Volume 324 Lecture Notes I Computer Science, pages 107-120 <doi: 10.1007/BFb0017135>.
Approaches for incorporating time into network analysis. Methods include: construction of time-ordered networks (temporal graphs); shortest-time and shortest-path-length analyses; resource spread calculations; data resampling and rarefaction for null model construction; reduction to time-aggregated networks with variable window sizes; application of common descriptive statistics to these networks; vector clock latencies; and plotting functionalities. The package supports <doi:10.1371/journal.pone.0020298>.
This package defines low-level functions for mass spectrometry data and is independent of any high-level data structures. These functions include mass spectra processing functions (noise estimation, smoothing, binning), quantitative aggregation functions (median polish, robust summarisation, etc.), missing data imputation, data normalisation (quantiles, vsn, etc.) as well as misc helper functions, that are used across high-level data structure within the R for Mass Spectrometry packages.
This package generates graphics with embedded details from statistical tests. Statistical tests included in the plots themselves. It provides an easier syntax to generate information-rich plots for statistical analysis of continuous or categorical data. Currently, it supports the most common types of statistical approaches and tests: parametric, nonparametric, robust, and Bayesian versions of t-test/ANOVA, correlation analyses, contingency table analysis, meta-analysis, and regression analyses.
This package provides functions for creating, modifying, and displaying bitmaps including printing them in the terminal. There is a special emphasis on monochrome bitmap fonts and their glyphs as well as colored pixel art/sprites. Provides native read/write support for the hex and yaff bitmap font formats and if monobit <https://github.com/robhagemans/monobit> is installed can also read/write several additional bitmap font formats.
This package provides a modified boxplot with a new fence coefficient determined by Lin et al. (2025). The traditional fence coefficient k=1.5 in Tukey's boxplot is replaced by a coefficient based on Chauvenet's criterion, as described in their formula (9). The new boxplot can be implemented in base R with function chau_boxplot(), and in ggplot2 with function geom_chau_boxplot().