Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for processing and analyzing metabolite data. The namesake function mrbin() converts 1D or 2D Nuclear Magnetic Resonance data into a matrix of values suitable for further data analysis and performs basic processing steps in a reproducible way. Negative values, a common issue in such data, can be replaced by positive values (<doi:10.1021/acs.jproteome.0c00684>). All used parameters are stored in a readable text file and can be restored from that file to enable exact reproduction of the data at a later time. The function fia() ranks features according to their impact on classifier models, especially artificial neural network models.
It is designed to work with text written in Bahasa Malaysia. We provide functions and data sets that will make working with Bahasa Malaysia text much easier. For word stemming in particular, we will look up the Malay words in a dictionary and then proceed to remove "extra suffix" as explained in Khan, Rehman Ullah, Fitri Suraya Mohamad, Muh Inam UlHaq, Shahren Ahmad Zadi Adruce, Philip Nuli Anding, Sajjad Nawaz Khan, and Abdulrazak Yahya Saleh Al-Hababi (2017) <https://ijrest.net/vol-4-issue-12.html> . This package includes a dictionary of Malay words that may be used to perform word stemming, a dataset of Malay stop words, a dataset of sentiment words and a dataset of normalized words.
Simulation, analysis and sampling of spatial biodiversity data (May, Gerstner, McGlinn, Xiao & Chase 2017) <doi:10.1111/2041-210x.12986>. In the simulation tools user define the numbers of species and individuals, the species abundance distribution and species aggregation. Functions for analysis include species rarefaction and accumulation curves, species-area relationships and the distance decay of similarity.
The latest guidelines proposed by International Expert Consensus are used for the clinical diagnosis of Metabolic Associated Fatty Liver Disease (MAFLD). The new definition takes hepatic steatosis (determined by elastography or histology or biomarker-based fatty liver index) as a major criterion. In addition, race, gender, body mass index (BMI), waist circumference (WC), fasting plasma glucose (FPG), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDLC), homeostatic model assessment of insulin resistance (HOMAIR), high sensitive c-reactive protein (HsCRP) for the diagnosis of MAFLD. Each parameter has to be interpreted based on the proposed cut-offs, making the diagnosis slightly complex and error-prone. This package is developed by incorporating the latest international expert consensus guidelines, and it will aid in the easy and quick diagnosis of MAFLD based on FibroScan in busy healthcare settings and also for research purposes. The new definition for MAFLD as per the International Consensus Statement is described by Eslam M et al (2020). <doi:10.1016/j.jhep.2020.03.039>.
Distance between multivariate generalised Gaussian distributions, as presented by N. Bouhlel and A. Dziri (2019) <doi:10.1109/LSP.2019.2915000>. Manipulation of multivariate generalised Gaussian distributions (methods presented by Gomez, Gomez-Villegas and Marin (1998) <doi:10.1080/03610929808832115> and Pascal, Bombrun, Tourneret and Berthoumieu (2013) <doi:10.1109/TSP.2013.2282909>).
This package provides a function to perform bias diagnostics on linear mixed models fitted with lmer() from the lme4 package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021) <doi:10.1016/j.jspi.2020.06.004>. Karl and Zimmerman (2020) <doi:10.17632/tmynggddfm.1> provide R code for implementing the test using mvglmmRank output. Development of this package was assisted by GPT o1-preview for code structure and documentation.
The estimation of the parameters in mixed Poisson models.
Bayesian inference analysis for bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximation with INLA. A purpose built graphic user interface is available. The installation of R package INLA is compulsory for successful usage. The INLA package can be obtained from <https://www.r-inla.org>. We recommend the testing version, which can be downloaded by running: install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE).
An implementation of classifier chains (CC's) for multi-label prediction. Users can employ an external package (e.g. randomForest', C50'), or supply their own. The package can train a single set of CC's or train an ensemble of CC's -- in parallel if running in a multi-core environment. New observations are classified using a Gibbs sampler since each unobserved label is conditioned on the others. The package includes methods for evaluating the predictions for accuracy and aggregating across iterations and models to produce binary or probabilistic classifications.
This package provides a hybrid modeling framework combining Support Vector Regression (SVR) with metaheuristic optimization algorithms, including the Archimedes Optimization Algorithm (AO) (Hashim et al. (2021) <doi:10.1007/s10489-020-01893-z>), Coot Bird Optimization (CBO) (Naruei & Keynia (2021) <doi:10.1016/j.eswa.2021.115352>), and their hybrid (AOCBO), as well as several others such as Harris Hawks Optimization (HHO) (Heidari et al. (2019) <doi:10.1016/j.future.2019.02.028>), Gray Wolf Optimizer (GWO) (Mirjalili et al. (2014) <doi:10.1016/j.advengsoft.2013.12.007>), Ant Lion Optimization (ALO) (Mirjalili (2015) <doi:10.1016/j.advengsoft.2015.01.010>), and Enhanced Harris Hawk Optimization with Coot Bird Optimization (EHHOCBO) (Cui et al. (2023) <doi:10.32604/cmes.2023.026019>). The package enables automatic tuning of SVR hyperparameters (cost, gamma, and epsilon) to enhance prediction performance. Suitable for regression tasks in domains such as renewable energy forecasting and hourly data prediction. For more details about implementation and parameter bounds see: Setiawan et al. (2021) <doi:10.1016/j.procs.2020.12.003> and Liu et al. (2018) <doi:10.1155/2018/6076475>.
Density, distribution function, ... hazard function, cumulative hazard function, survival function for survival distributions with piece-wise constant hazards and multiple states and methods to plot and summarise those distributions. A derivation of the used algorithms can be found in my masters thesis <doi:10.25365/thesis.76098>.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
Takes QC signal for each day and normalize metabolomic data that has been acquired in a certain period of time. At least three QC per day are required.
This package provides a comprehensive and computationally fast framework to analyze high dimensional data associated with an experimental design based on Multiple ANOVAs (MultANOVA). It includes testing the overall significance of terms in the model, post-hoc analyses of significant terms and variable selection. Details may be found in Mahieu, B., & Cariou, V. (2025). MultANOVA Followed by Post Hoc Analyses for Designed Highâ Dimensional Data: A Comprehensive Framework That Outperforms ASCA, rMANOVA, and VASCA. Journal of Chemometrics, 39(7). <doi:10.1002/cem.70039>.
Calculates Model-Averaged Tail Area Wald (MATA-Wald) confidence intervals, and MATA-Wald confidence densities and distributions, which are constructed using single-model frequentist estimators and model weights. See Turek and Fletcher (2012) <doi:10.1016/j.csda.2012.03.002> and Fletcher et al (2019) <doi:10.1007/s10651-019-00432-5> for details.
This package provides a glycolipid mass spectrometry technology has the potential to accurately identify individual bacterial species from polymicrobial samples. To develop bacterial identification algorithms (e.g. machine learning) using this glycolipid technology, it is necessary to generate a large number of various in-silico polymicrobial mass spectra that are similar to real mass spectra. MGMS2 (Membrane Glycolipid Mass Spectrum Simulator) generates such in-silico mass spectra, considering errors in m/z (mass-to-charge ratio) and variances of intensity values, occasions of missing signature ions, and noise peaks. It estimates summary statistics of monomicrobial mass spectra for each strain or species and simulates polymicrobial glycolipid mass spectra using the summary statistics of monomicrobial mass spectra. References: Ryu, S.Y., Wendt, G.A., Chandler, C.E., Ernst, R.K. and Goodlett, D.R. (2019) <doi:10.1021/acs.analchem.9b03340> "Model-based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids." Gibb, S. and Strimmer, K. (2012) <doi:10.1093/bioinformatics/bts447> "MALDIquant: a versatile R package for the analysis of mass spectrometry data.".
Bending non-positive-definite (symmetric) matrices to positive-definite, using weighted and unweighted methods. Jorjani, H., et al. (2003) <doi:10.3168/jds.S0022-0302(03)73646-7>. Schaeffer, L. R. (2014) <http://animalbiosciences.uoguelph.ca/~lrs/ELARES/PDforce.pdf>.
Prints a random quote from Marcus Aurelius book Meditations.
Framework for the simulation framework for the simulation of complex breeding programs and compare their economic and genetic impact. Associated publication: Pook et al. (2020) <doi:10.1534/g3.120.401193>.
This package performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.
Quantification is a prominent machine learning task that has received an increasing amount of attention in the last years. The objective is to predict the class distribution of a data sample. This package is a collection of machine learning algorithms for class distribution estimation. This package include algorithms from different paradigms of quantification. These methods are described in the paper: A. Maletzke, W. Hassan, D. dos Reis, and G. Batista. The importance of the test set size in quantification assessment. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI20, pages 2640â 2646, 2020. <doi:10.24963/ijcai.2020/366>.
This package performs meta-analysis and meta-regression using standard and robust methods with confidence intervals based on the profile likelihood. Robust methods are based on alternative distributions for the random effect, either the t-distribution (Lee and Thompson, 2008 <doi:10.1002/sim.2897> or Baker and Jackson, 2008 <doi:10.1007/s10729-007-9041-8>) or mixtures of normals (Beath, 2014 <doi:10.1002/jrsm.1114>).
This package provides pipe-style interface for data.table'. Package preserves all data.table features without significant impact on performance. let and take functions are simplified interfaces for most common data manipulation tasks. For example, you can write take(mtcars, mean(mpg), by = am) for aggregation or let(mtcars, hp_wt = hp/wt, hp_wt_mpg = hp_wt/mpg) for modification. Use take_if/let_if for conditional aggregation/modification. Additionally there are some conveniences such as automatic data.frame conversion to data.table'.
This package provides statistical tests and algorithms for the detection of change points in time series and point processes - particularly for changes in the mean in time series and for changes in the rate and in the variance in point processes. References - Michael Messer, Marietta Kirchner, Julia Schiemann, Jochen Roeper, Ralph Neininger and Gaby Schneider (2014), A multiple filter test for the detection of rate changes in renewal processes with varying variance <doi:10.1214/14-AOAS782>. Stefan Albert, Michael Messer, Julia Schiemann, Jochen Roeper, Gaby Schneider (2017), Multi-scale detection of variance changes in renewal processes in the presence of rate change points <doi:10.1111/jtsa.12254>. Michael Messer, Kaue M. Costa, Jochen Roeper and Gaby Schneider (2017), Multi-scale detection of rate changes in spike trains with weak dependencies <doi:10.1007/s10827-016-0635-3>. Michael Messer, Stefan Albert and Gaby Schneider (2018), The multiple filter test for change point detection in time series <doi:10.1007/s00184-018-0672-1>. Michael Messer, Hendrik Backhaus, Albrecht Stroh and Gaby Schneider (2019+) Peak detection in time series.