Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R functions for the estimation and eigen-decomposition of multivariate autoregressive models.
The Iterative Proportional Fitting (IPF) algorithm operates on count data. This package offers implementations for several algorithms that extend this to nested structures: parent and child items for both of which constraints can be provided. The fitting algorithms include Iterative Proportional Updating <https://trid.trb.org/view/881554>, Hierarchical IPF <doi:10.3929/ethz-a-006620748>, Entropy Optimization <https://trid.trb.org/view/881144>, and Generalized Raking <doi:10.2307/2290793>. Additionally, a number of replication methods is also provided such as Truncate, replicate, sample <doi:10.1016/j.compenvurbsys.2013.03.004>.
This package provides functions to collapse a tidy data frame into matrices in a data frame and expand a data frame of matrices into a tidy data frame.
We provide detailed functions for univariate Mixed Tempered Stable distribution.
Calculate predicted levels and marginal effects, using the delta method to calculate standard errors. This is an R-based version of the margins command from Stata.
There is an increasing interest in investigating how the compositions of microbial communities are associated with human health and disease. In this package, we present a novel global testing method called aMiSPU, that is highly adaptive and thus high powered across various scenarios, alleviating the issue with the choice of a phylogenetic distance. Our simulations and real data analysis demonstrated that aMiSPU test was often more powerful than several competing methods while correctly controlling type I error rates.
This package provides functions to support compatibility between Maelstrom R packages and Opal environment. Opal is the OBiBa core database application for biobanks. It is used to build data repositories that integrates data collected from multiple sources. Opal Maelstrom is a specific implementation of this software. This Opal client is specifically designed to interact with Opal Maelstrom distributions to perform operations on the R server side. The user must have adequate credentials. Please see <https://opaldoc.obiba.org/> for complete documentation.
This package provides a flexible framework for power analysis using Monte Carlo simulation for settings in which considerations of the correlations between predictors are important. Users can set up a data generative model that preserves dependence structures among predictors given existing data (continuous, binary, or ordinal). Users can also generate power curves to assess the trade-offs between sample size, effect size, and power of a design. This package includes several statistical models common in environmental mixtures studies. For more details and tutorials, see Nguyen et al. (2022) <arXiv:2209.08036>.
Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multi-modal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.
This package implements a computational framework to predict microbial community-based metabolic profiles with O2PLS model. It provides procedures of model training and prediction. Paired microbiome and metabolome data are needed for modeling, and the trained model can be applied to predict metabolites of analogous environments using new microbial feature abundances.
This package provides functions and examples based on the m-out-of-n bootstrap suggested by Politis, D.N. and Romano, J.P. (1994) <doi:10.1214/aos/1176325770>. Additionally there are functions to estimate the scaling factor tau and the subsampling size m. For a detailed description and a full list of references, see Dalitz, C. and Lögler, F. (2025) <doi:10.32614/RJ-2025-031>.
Estimation of marginal hazard ratios in clustered failure time data. It implements the weighted generalized estimating equation approach based on a semiparametric marginal proportional hazards model (See Niu, Y. Peng, Y.(2015). "A new estimating equation approach for marginal hazard ratio estimation"), accounting for within-cluster correlations. 5 different correlation structures are supported. The package is designed for researchers in biostatistics and epidemiology who require accurate and efficient estimation methods for survival analysis in clustered data settings.
Given a vector of multivariate normal data, a matrix of covariates and the data covariance matrix, generate new multivariate normal samples that have the same covariance matrix based on permutations of the transformed data residuals.
Recently, multiple marginal variable selection methods have been developed and shown to be effective in Gene-Environment interactions studies. We propose a novel marginal Bayesian variable selection method for Gene-Environment interactions studies. In particular, our marginal Bayesian method is robust to data contamination and outliers in the outcome variables. With the incorporation of spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain Monte Carlo. The core algorithms of the package have been developed in C++'.
This package provides methods for quality control and exploratory analysis of surface water quality data collected in Massachusetts, USA. Functions are developed to facilitate data formatting for the Water Quality Exchange Network <https://www.epa.gov/waterdata/water-quality-data-upload-wqx> and reporting of data quality objectives to state agencies. Quality control methods are from Massachusetts Department of Environmental Protection (2020) <https://www.mass.gov/orgs/massachusetts-department-of-environmental-protection>.
Offers an easy and automated way to scale up individual-level space use analysis to that of groups. Contains a function from the move package to calculate a dynamic Brownian bridge movement model from movement data for individual animals, as well as functions to visualize and quantify space use for individuals aggregated in groups. Originally written with passive acoustic telemetry in mind, this package also provides functionality to account for unbalanced acoustic receiver array designs, and satellite tag data.
The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package stats'.
Multivariable Fractional Polynomial algorithm for model-building. Fractional polynomials are used to represent curvature in regression models. A key reference is Royston and Altman, 1994.
An interactive application to visualise meta-analysis data as a physical weighing machine. The interface is based on the Shiny web application framework, though can be run locally and with the user's own data.
This package contains functions to estimate the proportion of effects stronger than a threshold of scientific importance (function prop_stronger), to nonparametrically characterize the distribution of effects in a meta-analysis (calib_ests, pct_pval), to make effect size conversions (r_to_d, r_to_z, z_to_r, d_to_logRR), to compute and format inference in a meta-analysis (format_CI, format_stat, tau_CI), to scrape results from existing meta-analyses for re-analysis (scrape_meta, parse_CI_string, ci_to_var).
This package provides a data package containing public domain information on requests made by the MuckRock (https://www.muckrock.com/) project under the United States Freedom of Information Act.
This package provides functions for reading (tab, csv, Bruker fid, Ciphergen XML, mzXML, mzML, imzML, Analyze 7.5, CDF, mMass MSD) and writing (tab, csv, mMass MSD, mzML, imzML) different file formats of mass spectrometry data into/from MALDIquant objects.
Flexible implementation of a structural change point detection algorithm for multivariate time series. It authorizes inclusion of trends, exogenous variables, and break test on the intercept or on the full vector autoregression system. Bai, Lumsdaine, and Stock (1998) <doi:10.1111/1467-937X.00051>.
This package provides tools for the analysis of psychophysical data in R. This package allows to estimate the Point of Subjective Equivalence (PSE) and the Just Noticeable Difference (JND), either from a psychometric function or from a Generalized Linear Mixed Model (GLMM). Additionally, the package allows plotting the fitted models and the response data, simulating psychometric functions of different shapes, and simulating data sets. For a description of the use of GLMMs applied to psychophysical data, refer to Moscatelli et al. (2012).