Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Complex niche models show low performance in identifying the most important range-limiting environmental variables and in transferring habitat suitability to novel environmental conditions (Warren and Seifert, 2011 <DOI:10.1890/10-1171.1>; Warren et al., 2014 <DOI:10.1111/ddi.12160>). This package helps to identify the most important set of uncorrelated variables and to fine-tune Maxent's regularization multiplier. In combination, this allows to constrain complexity and increase performance of Maxent niche models (assessed by information criteria, such as AICc (Akaike, 1974 <DOI:10.1109/TAC.1974.1100705>), and by the area under the receiver operating characteristic (AUC) (Fielding and Bell, 1997 <DOI:10.1017/S0376892997000088>). Users of this package should be familiar with Maxent niche modelling.
Simulates respiratory virus epidemics using meta-population compartmental models following Fadikar et. al. (2025) <doi:10.1101/2025.05.05.25327021>. MetaRVM implements a stochastic SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) framework with demographic stratification by age, race, and geographic zones. It supports complex epidemiological scenarios including asymptomatic and presymptomatic transmission, hospitalization dynamics, vaccination schedules, and time-varying contact patterns via mixing matrices.
The implemented methods reach out to scientists that seek to estimate multiplicity of infection (MOI) and lineage (allele) frequencies and prevalences at molecular markers using the maximum-likelihood method described in Schneider (2018) <doi:10.1371/journal.pone.0194148>, and Schneider and Escalante (2014) <doi:10.1371/journal.pone.0097899>. Users can import data from Excel files in various formats, and perform maximum-likelihood estimation on the imported data by the package's moimle() function.
Fits multivariate Ornstein-Uhlenbeck types of models to continues trait data from species related by a common evolutionary history. See K. Bartoszek, J, Pienaar, P. Mostad, S. Andersson, T. F. Hansen (2012) <doi:10.1016/j.jtbi.2012.08.005> and K. Bartoszek, and J. Tredgett Clarke, J. Fuentes-Gonzalez, V. Mitov, J. Pienaar, M. Piwczynski, R. Puchalka, K. Spalik, K. L. Voje (2024) <doi:10.1111/2041-210X.14376>. The suggested PCMBaseCpp package (which significantly speeds up the likelihood calculations) can be obtained from <https://github.com/venelin/PCMBaseCpp/>.
Access to different Spanish meteorological stations data services and APIs (AEMET, SMC, MG, Meteoclimatic...).
This package provides an extensive collection of datasets related to medicine, diseases, treatments, drugs, and public health. This package covers topics such as drug effectiveness, vaccine trials, survival rates, infectious disease outbreaks, and medical treatments. The included datasets span various health conditions, including AIDS, cancer, bacterial infections, and COVID-19, along with information on pharmaceuticals and vaccines. These datasets are sourced from the R ecosystem and other R packages, remaining unaltered to ensure data integrity. This package serves as a valuable resource for researchers, analysts, and healthcare professionals interested in conducting medical and public health data analysis in R.
This package provides functions for estimating structural equation models using instrumental variables.
This package provides the Augmented Dickey-Fuller test and its variations to check the existence of bubbles (explosive behavior) for time series, based on the article by Peter C. B. Phillips, Shuping Shi and Jun Yu (2015a) <doi:10.1111/iere.12131>. Some functions may take a while depending on the size of the data used, or the number of Monte Carlo replications applied.
Incorporates Approximate Bayesian Computation to get a posterior distribution and to select a model optimal parameter for an observation point. Additionally, the meta-sampling heuristic algorithm is realized for parameter estimation, which requires no model runs and is dimension-independent. A sampling scheme is also presented that allows model runs and uses the meta-sampling for point generation. A predictor is realized as the meta-sampling for the model output. All the algorithms leverage a machine learning method utilizing the maxima weighted Isolation Kernel approach, or MaxWiK'. The method involves transforming raw data to a Hilbert space (mapping) and measuring the similarity between simulated points and the maxima weighted Isolation Kernel mapping corresponding to the observation point. Comprehensive details of the methodology can be found in the papers Iurii Nagornov (2024) <doi:10.1007/978-3-031-66431-1_16> and Iurii Nagornov (2023) <doi:10.1007/978-3-031-29168-5_18>.
Mahalanobis-Taguchi (MT) system is a collection of multivariate analysis methods developed for the field of quality engineering. MT system consists of two families depending on their purpose. One is a family of Mahalanobis-Taguchi (MT) methods (in the broad sense) for diagnosis (see Woodall, W. H., Koudelik, R., Tsui, K. L., Kim, S. B., Stoumbos, Z. G., and Carvounis, C. P. (2003) <doi:10.1198/004017002188618626>) and the other is a family of Taguchi (T) methods for forecasting (see Kawada, H., and Nagata, Y. (2015) <doi:10.17929/tqs.1.12>). The MT package contains three basic methods for the family of MT methods and one basic method for the family of T methods. The MT method (in the narrow sense), the Mahalanobis-Taguchi Adjoint (MTA) methods, and the Recognition-Taguchi (RT) method are for the MT method and the two-sided Taguchi (T1) method is for the family of T methods. In addition, the Ta and Tb methods, which are the improved versions of the T1 method, are included.
Implementations of various robust and flexible model-based clustering methods for data sets with missing values at random (Tong and Tortora, 2025, <doi:10.18637/jss.v115.i03>). Two main models are: Multivariate Contaminated Normal Mixture (MCNM, Tong and Tortora, 2022, <doi:10.1007/s11634-021-00476-1>) and Multivariate Generalized Hyperbolic Mixture (MGHM, Wei et al., 2019, <doi:10.1016/j.csda.2018.08.016>). Mixtures via some special or limiting cases of the multivariate generalized hyperbolic distribution are also included: Normal-Inverse Gaussian, Symmetric Normal-Inverse Gaussian, Skew-Cauchy, Cauchy, Skew-t, Student's t, Normal, Symmetric Generalized Hyperbolic, Hyperbolic Univariate Marginals, Hyperbolic, and Symmetric Hyperbolic. Funding: This work was partially supported by the National Science foundation NSF Grant NO. 2209974.
Fits the Multiple Random Dot Product Graph Model and performs a test for whether two networks come from the same distribution. Both methods are proposed in Nielsen, A.M., Witten, D., (2018) "The Multiple Random Dot Product Graph Model", arXiv preprint <arXiv:1811.12172> (Submitted to Journal of Computational and Graphical Statistics).
Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.
This package provides functions to perform sensitivity analysis on a model with multivariate output.
This package provides functions of marginal mean and quantile regression models are used to analyze environmental exposure and biomonitoring data with repeated measurements and non-detects (i.e., values below the limit of detection (LOD)), as well as longitudinal exposure data that include non-detects and time-dependent covariates. For more details see Chen IC, Bertke SJ, Curwin BD (2021) <doi:10.1038/s41370-021-00345-1>, Chen IC, Bertke SJ, Estill CF (2024) <doi:10.1038/s41370-024-00640-7>, Chen IC, Bertke SJ, Dahm MM (2024) <doi:10.1093/annweh/wxae068>, and Chen IC (2025) <doi:10.1038/s41370-025-00752-8>.
This package implements finite mixtures of matrix-variate contaminated normal distributions via expectation conditional-maximization algorithm for model-based clustering, as described in Tomarchio et al.(2020) <arXiv:2005.03861>. One key advantage of this model is the ability to automatically detect potential outlying matrices by computing their a posteriori probability of being typical or atypical points. Finite mixtures of matrix-variate t and matrix-variate normal distributions are also implemented by using expectation-maximization algorithms.
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d data. A bootstrap restarting iterative segmented quantile algorithm is proposed to estimate the multiple kink quantile regression model conditional on a given number of change points. The number of kinks is also allowed to be unknown. In such case, the backward elimination algorithm and the bootstrap restarting iterative segmented quantile algorithm are combined to select the number of change points based on a quantile BIC. For longitudinal data, we also develop the GEE estimator to incorporate the within-subject correlations. A score-type based test statistic is also developed for testing the existence of kink effect. The package is based on the paper, ``Wei Zhong, Chuang Wan and Wenyang Zhang (2022). Estimation and inference for multikink quantile regression, JBES and ``Chuang Wan, Wei Zhong, Wenyang Zhang and Changliang Zou (2022). Multi-kink quantile regression for longitudinal data with application to progesterone data analysis, Biometrics".
Collect and normalize local microinverter energy and power production data through off-cloud API requests. Currently supports APSystems', Enphase', and Fronius microinverters.
This package provides functions to interpolate irregularly and regularly spaced data using Multilevel B-spline Approximation (MBA). Functions call portions of the SINTEF Multilevel B-spline Library written by à yvind Hjelle which implements methods developed by Lee, Wolberg and Shin (1997; <doi:10.1109/2945.620490>).
This package provides weighted versions of several metrics and performance measures used in machine learning, including average unit deviances of the Bernoulli, Tweedie, Poisson, and Gamma distributions, see Jorgensen B. (1997, ISBN: 978-0412997112). The package also contains a weighted version of generalized R-squared, see e.g. Cohen, J. et al. (2002, ISBN: 978-0805822236). Furthermore, dplyr chains are supported.
This package provides a simple and the early stage package for matrix profile based on the paper of Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh (2016) <DOI:10.1109/ICDM.2016.0179>. This package calculates all-pairs-similarity for a given window size for time series data.
This package provides a comprehensive set of tools for working with order statistics, including functions for simulating order statistics, censored samples (Type I and Type II), and record values from various continuous distributions. Additionally, it offers functions to compute moments (mean, variance, skewness, kurtosis) of order statistics for several continuous distributions. These tools assist researchers and statisticians in understanding and analyzing the properties of order statistics and related data. The methods and algorithms implemented in this package are based on several published works, including Ahsanullah et al (2013, ISBN:9789491216831), Arnold and Balakrishnan (2012, ISBN:1461236444), Harter and Balakrishnan (1996, ISBN:9780849394522), Balakrishnan and Sandhu (1995) <doi:10.1080/00031305.1995.10476150>, Genç (2012) <doi:10.1007/s00362-010-0320-y>, Makouei et al (2021) <doi:10.1016/j.cam.2021.113386> and Nagaraja (2013) <doi:10.1016/j.spl.2013.06.028>.
The Self-Organizing Maps with Built-in Missing Data Imputation. Missing values are imputed and regularly updated during the online Kohonen algorithm. Our method can be used for data visualisation, clustering or imputation of missing data. It is an extension of the online algorithm of the kohonen package. The method is described in the article "Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values" by S. Rejeb, C. Duveau, T. Rebafka (2022) <arXiv:2202.07963>.
Tokenize text into morphemes. The morphemepiece algorithm uses a lookup table to determine the morpheme breakdown of words, and falls back on a modified wordpiece tokenization algorithm for words not found in the lookup table.