This package provides functions for the calibration of radiocarbon dates, as well as options to calculate different radiocarbon timescales (C14 age, F14C, pMC, D14C) and estimating the effects of contamination or local reservoir offsets (Reimer and Reimer 2001 <doi:10.1017/S0033822200038339>). The methods follow long-established recommendations such as Stuiver and Polach (1977) <doi:10.1017/S0033822200003672> and Reimer et al. (2004) <doi:10.1017/S0033822200033154>. This package uses the calibration curves from the data package rintcal'.
This package provides a flexible and easy-to-use interface for the Physiological Processes Predicting Growth (3-PG) model written in Fortran. The r3PG serves as a flexible and easy-to-use interface for the 3-PGpjs (monospecific, evenaged and evergreen forests) described in Landsberg & Waring (1997) <doi:10.1016/S0378-1127(97)00026-1> and the 3-PGmix (deciduous, uneven-aged or mixed-species forests) described in Forrester & Tang (2016) <doi:10.1016/j.ecolmodel.2015.07.010>.
Efficient solvers for 10 regularized multi-task learning algorithms applicable for regression, classification, joint feature selection, task clustering, low-rank learning, sparse learning and network incorporation. Based on the accelerated gradient descent method, the algorithms feature a state-of-art computational complexity O(1/k^2). Sparse model structure is induced by the solving the proximal operator. The detail of the package is described in the paper of Han Cao and Emanuel Schwarz (2018) <doi:10.1093/bioinformatics/bty831>.
Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order tensor time series, and have wide applications in economics, finance and medical imaging. We propose an one-step projection estimator by minimizing the least-square loss function, and further propose a robust estimator with an iterative weighted projection technique by utilizing the Huber loss function. The methods are discussed in Barigozzi et al. (2022) <arXiv:2206.09800>, and Barigozzi et al. (2023) <arXiv:2303.18163>.
This package provides a collection of R functions for use with Stock Synthesis, a fisheries stock assessment modeling platform written in ADMB by Dr. Richard D. Methot at the NOAA Northwest Fisheries Science Center. The functions include tools for summarizing and plotting results, manipulating files, visualizing model parameterizations, and various other common stock assessment tasks. This version of r4ss is compatible with Stock Synthesis versions 3.24 through 3.30 (specifically version 3.30.19.01, from April 2022).
This package provides a convenient way of accessing data published by the Reserve Bank of New Zealand (RBNZ) on their website, <https://www.rbnz.govt.nz/statistics>. A range of financial and economic data is provided in spreadsheet format including exchange and interest rates, commercial lending statistics, Reserve Bank market operations, financial institution statistics, household financial data, New Zealand debt security information, and economic indicators. This package provides a method to download those spreadsheets and read them directly into R.
This package provides a suite of tools useful to read, visualize and export bivariate motion energy time-series. Lagged synchrony between subjects can be analyzed through windowed cross-correlation. Surrogate data generation allows an estimation of pseudosynchrony that helps to estimate the effect size of the observed synchronization. Kleinbub, J. R., & Ramseyer, F. T. (2020). rMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. Psychotherapy research, 1-14. <doi:10.1080/10503307.2020.1844334>.
Existing adaptive design methods in clinical trials. The package includes power, stopping boundaries (sample size) calculation functions for two-group group sequential designs, adaptive design with coprimary endpoints, biomarker-informed adaptive design, etc.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2408.10558>, and allows for the statistical modeling of multi-attribute pairwise comparison data.
The Chinese ID number contains a lot of information, this package helps you get the region, date of birth, age, age based on year, gender, zodiac, constellation information from the Chinese ID number.
This package provides a set of user-friendly wrapper functions for creating consistent graphics and diagrams with lines, common shapes, text, and page settings. Compatible with and based on the R grid package.
Empirical likelihood ratio tests for the Yang and Prentice (short/long term hazards ratio) models. Empirical likelihood tests within a Cox model, for parameters defined via both baseline hazard function and regression parameters.
Provide the EMU Speech Database Management System (EMU-SDMS) with database management, data extraction, data preparation and data visualization facilities. See <https://ips-lmu.github.io/The-EMU-SDMS-Manual/> for more details.
This package implements the fused lasso additive model as proposed in Petersen, A., Witten, D., and Simon, N. (2016). Fused Lasso Additive Model. Journal of Computational and Graphical Statistics, 25(4): 1005-1025.
Allows for easy creation of diagnostic plots for a variety of model objects using the Grammar of Graphics. Provides functionality for both individual diagnostic plots and an array of four standard diagnostic plots.
Hadoop InteractiVE facilitates distributed computing via the MapReduce paradigm through R and Hadoop. An easy to use interface to Hadoop, the Hadoop Distributed File System (HDFS), and Hadoop Streaming is provided.
Fits regression models on high dimensional data to estimate coefficients and use bootstrap method to obtain confidence intervals. Choices for regression models are Lasso, Lasso+OLS, Lasso partial ridge, Lasso+OLS partial ridge.
This package provides functions and data to reproduce all plots in the book "Practical Smoothing. The Joys of P-splines" by Paul H.C. Eilers and Brian D. Marx (2021, ISBN:978-1108482950).
This package implements local spatial and local spatiotemporal Kriging based on local spatial and local spatiotemporal variograms, respectively. The method is documented in Kumar et al (2013) <https://www.nature.com/articles/jes201352)>.
This package implements three bias-correction techniques from Battaglia et al. (2025 <doi:10.48550/arXiv.2402.15585>) to improve inference in regression models with covariates generated by AI or machine learning.
Interfaces the Python library zuko implementing Masked Autoregressive Flows. See Rozet, Divo and Schnake (2023) <doi:10.5281/zenodo.7625672> and Papamakarios, Pavlakou and Murray (2017) <doi:10.48550/arXiv.1705.07057>.
R package associated with the Multiple Approximate Kernel Learning (MAKL) algorithm proposed in <doi:10.1093/bioinformatics/btac241>. The algorithm fits multiple approximate kernel learning (MAKL) models that are fast, scalable and interpretable.
Allows users to produce estimates and MSE for multivariate variables using Linear Mixed Model. The package follows the approach of Datta, Day and Basawa (1999) <doi:10.1016/S0378-3758(98)00147-5>.
It implements a new procedure of variable selection in the context of redundancy between explanatory variables, which holds true with high dimensional data (Grimonprez et al. (2023) <doi:10.18637/jss.v106.i03>).