Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements several methods to meta-analyze studies that report the sample median of the outcome. The methods described by McGrath et al. (2019) <doi:10.1002/sim.8013>, Ozturk and Balakrishnan (2020) <doi:10.1002/sim.8738>, and McGrath et al. (2020a) <doi:10.1002/bimj.201900036> can be applied to directly meta-analyze the median or difference of medians between groups. Additionally, a number of methods (e.g., McGrath et al. (2020b) <doi:10.1177/0962280219889080>, Cai et al. (2021) <doi:10.1177/09622802211047348>, and McGrath et al. (2023) <doi:10.1177/09622802221139233>) are implemented to estimate study-specific (difference of) means and their standard errors in order to estimate the pooled (difference of) means. Methods for meta-analyzing median survival times (McGrath et al. (2025) <doi:10.48550/arXiv.2503.03065>) are also implemented. See McGrath et al. (2024) <doi:10.1002/jrsm.1686> for a detailed guide on using the package.
Efficient procedures for computing a new Multi-Class Sparse Discriminant Analysis method that estimates all discriminant directions simultaneously. It is an implementation of the work proposed by Mai, Q., Yang, Y., and Zou, H. (2019) <doi:10.5705/ss.202016.0117>.
This package implements a procedure to automatically generate 2D masks for clusters on dimensional reduction plots from methods like t-SNE (t-distributed stochastic neighbor embedding) or UMAP (uniform manifold approximation and projection), with a focus on single-cell RNA-sequencing data.
The Mass Transportation Distance rank histogram was developed to assess the reliability of scenarios with equal or different probabilities of occurrence <doi:10.1002/we.1872>.
Multivariate functional principal component analysis via fast covariance estimation for multivariate sparse functional data or longitudinal data proposed by Li, Xiao, and Luo (2020) <doi: 10.1002/sta4.245>.
Generalized low-rank models for mixed and incomplete data frames. The main function may be used for dimensionality reduction of imputation of numeric, binary and count data (simultaneously). Main effects such as column means, group effects, or effects of row-column side information (e.g. user/item attributes in recommendation system) may also be modelled in addition to the low-rank model. Geneviève Robin, Olga Klopp, Julie Josse, à ric Moulines, Robert Tibshirani (2018) <arXiv:1806.09734>.
Vitamin and mineral deficiencies continue to be a significant public health problem. This is particularly critical in developing countries where deficiencies to vitamin A, iron, iodine, and other micronutrients lead to adverse health consequences. Cross-sectional surveys are helpful in answering questions related to the magnitude and distribution of deficiencies of selected vitamins and minerals. This package provides tools for calculating and determining select vitamin and mineral deficiencies based on World Health Organization (WHO) guidelines found at <https://www.who.int/teams/nutrition-and-food-safety/databases/vitamin-and-mineral-nutrition-information-system>.
This package provides tools for animal movement modelling using hidden Markov models. These include processing of tracking data, fitting hidden Markov models to movement data, visualization of data and fitted model, decoding of the state process, etc. <doi:10.1111/2041-210X.12578>.
Provide a sample size calculator for micro-randomized trials (MRTs) based on methodology developed in Sample Size Calculations for Micro-randomized Trials in mHealth by Liao et al. (2016) <DOI:10.1002/sim.6847>.
We implement functions allowing for mediation analysis to be performed in cases where the mediator is a count variable with excess zeroes. First a function is provided allowing users to perform analysis for zero-inflated count variables using the marginalized zero-inflated Poisson (MZIP) model (Long et al. 2014 <DOI:10.1002/sim.6293>). Using the counterfactual approach to mediation and MZIP we can obtain natural direct and indirect effects for the overall population. Using delta method processes variance estimation can be performed instantaneously. Alternatively, bootstrap standard errors can be used. We also provide functions for cases with exposure-mediator interactions with four-way decomposition of total effect.
Automatic marking of R assignments for students and teachers based on testthat test suites.
Pipeline for Genome-Wide Association Study using Multi-Locus Mixed Model from Segura V, Vilhjálmsson BJ et al. (2012) <doi:10.1038/ng.2314>. The pipeline include detection of associated SNPs with MLMM, model selection by lowest eBIC and p-value threshold, estimation of the effects of the SNPs in the selected model and graphical functions.
This package performs a multiscale analysis of a nonparametric regression or nonparametric regressions with time series errors. In case of one regression, with the help of this package it is possible to detect the regions where the trend function is increasing or decreasing. In case of multiple regressions, the test identifies regions where the trend functions are different from each other. See Khismatullina and Vogt (2020) <doi:10.1111/rssb.12347>, Khismatullina and Vogt (2022) <doi:10.48550/arXiv.2209.10841> and Khismatullina and Vogt (2023) <doi:10.1016/j.jeconom.2021.04.010> for more details on theory and applications.
Algorithms for multivariate outlier detection when missing values occur. Algorithms are based on Mahalanobis distance or data depth. Imputation is based on the multivariate normal model or uses nearest neighbour donors. The algorithms take sample designs, in particular weighting, into account. The methods are described in Bill and Hulliger (2016) <doi:10.17713/ajs.v45i1.86>.
Modular implementation of Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) [Zhang and Li (2007), <DOI:10.1109/TEVC.2007.892759>] for quick assembling and testing of new algorithmic components, as well as easy replication of published MOEA/D proposals. The full framework is documented in a paper published in the Journal of Statistical Software [<doi:10.18637/jss.v092.i06>].
Calculate multiple statistics with confidence intervals for matched case-control data including risk difference, risk ratio, relative difference, and the odds ratio. Results are equivalent to those from Stata', and you can choose how to format your input data. Methods used are those described on page 56 the Stata documentation for "Epitab - Tables for Epidemologists" <https://www.stata.com/manuals/repitab.pdf>.
This project extends R with a mechanism for efficient parallel data access by utilizing C++ shared memory. Large data objects can be accessed and manipulated directly from R without redundant copying, providing both speed and memory efficiency.
Focus-glue-context (FGC) fisheye transformations to two-dimensional coordinates and spatial vector geometries. Implements a smooth radial distortion that enlarges a focal region, transitions through a glue ring, and preserves outside context. Methods build on generalized fisheye views and focus+context mapping. For more details see Furnas (1986) <doi:10.1145/22339.22342>, Furnas (2006) <doi:10.1145/1124772.1124921> and Yamamoto et al. (2009) <doi:10.1145/1653771.1653788>.
This package implements an estimator for relative risk based on the median unbiased estimator. The relative risk estimator is well defined and performs satisfactorily for a wide range of data configurations. The details of the method are available in Carter et al (2010) <doi:10.1111/j.1467-9876.2010.00711.x>.
Hypothesis tests for multivariate data. Tests for one and two mean vectors, multivariate analysis of variance, tests for one, two or more covariance matrices. References include: Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. ISBN: 978-0124712522. London: Academic Press.
Projects mean squared out-of-sample error for a linear regression based upon the methodology developed in Rohlfs (2022) <doi:10.48550/arXiv.2209.01493>. It consumes as inputs the lm object from an estimated OLS regression (based on the "training sample") and a data.frame of out-of-sample cases (the "test sample") that have non-missing values for the same predictors. The test sample may or may not include data on the outcome variable; if it does, that variable is not used. The aim of the exercise is to project what what mean squared out-of-sample error can be expected given the predictor values supplied in the test sample. Output consists of a list of three elements: the projected mean squared out-of-sample error, the projected out-of-sample R-squared, and a vector of out-of-sample "hat" or "leverage" values, as defined in the paper.
Generate central composite designs (CCD)with full as well as fractional factorial points (half replicate) and Box Behnken designs (BBD) with minimally changed run sequence.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival and reproduction Data. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See our companion paper Baudrot and Charles (2021) <doi:10.21105/joss.03200>, as well as complementary details in Baudrot et al. (2018) <doi:10.1021/acs.est.7b05464> and Delignette-Muller et al. (2017) <doi:10.1021/acs.est.6b05326>.
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. missSBM', presented in Barbillon, Chiquet and Tabouy (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in Tabouy, Barbillon and Chiquet (2019) <doi:10.1080/01621459.2018.1562934>.