Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Symbolic computing with multivariate polynomials in R.
Early insights in probability theory were largely influenced by questions about gambling and games of chance, as noted by Blitzstein and Hwang (2019, ISBN:978-1138369917). In modern times, playing cards continue to serve as an effective teaching tool for probability, statistics, and even R programming, as demonstrated by Grolemund (2014, ISBN:978-1449359010). The mmcards package offers a collection of utility functions designed to aid in the creation, manipulation, and utilization of playing card decks in multiple formats. These include a standard 52-card deck, as well as alternative decks such as decks defined by custom anonymous functions and custom interleaved decks. Optimized for the development of educational shiny applications, the package is particularly useful for teaching statistics and probability through card-based games. Functions include shuffle_deck(), which creates either a shuffled standard deck or a shuffled custom alternative deck; deal_card(), which takes a deck and returns a list object containing both the dealt card and the updated deck; and i_deck(), which adds image paths to card objects, further enriching the package's utility in the development of interactive shiny application card games.
Identifying maturation stages across young athletes is paramount for talent identification. Furthermore, the concept of biobanding, or grouping of athletes based on their biological development, instead of their chronological age, has been widely researched. The goal of this package is to help professionals working in the field of strength & conditioning and talent ID obtain common maturation metrics and as well as to quickly visualize this information via several plotting options. For the methods behind the computed maturation metrics implemented in this package refer to Khamis, H. J., & Roche, A. F. (1994) <https://pubmed.ncbi.nlm.nih.gov/7936860/>, Mirwald, R.L et al., (2002) <https://pubmed.ncbi.nlm.nih.gov/11932580/> and Cumming, Sean P. et al., (2017) <doi:10.1519/SSC.0000000000000281>.
Fit and plot macroecological patterns predicted by the Maximum Entropy Theory of Ecology (METE).
This package provides functions and datasets used in the book: Fernandez-Casal, R., Costa, J. and Oviedo-de la Fuente, M. (2024) "Metodos predictivos de aprendizaje estadistico" <https://rubenfcasal.github.io/aprendizaje_estadistico/>.
The time series forecasting framework for use with the tidymodels ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the forecast and prophet packages. Refer to "Forecasting Principles & Practice, Second edition" (<https://otexts.com/fpp2/>). Refer to "Prophet: forecasting at scale" (<https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).
Biodiversity areas, especially primary forest, serve a multitude of functions for local economy, regional functionality of the ecosystems as well as the global health of our planet. Recently, adverse changes in human land use practices and climatic responses to increased greenhouse gas emissions, put these biodiversity areas under a variety of different threats. The present package helps to analyse a number of biodiversity indicators based on freely available geographical datasets. It supports computational efficient routines that allow the analysis of potentially global biodiversity portfolios. The primary use case of the package is to support evidence based reporting of an organization's effort to protect biodiversity areas under threat and to identify regions were intervention is most duly needed.
Offers a gentle introduction to machine learning concepts for practitioners with a statistical pedigree: decomposition of model error (bias-variance trade-off), nonlinear correlations, information theory and functional permutation/bootstrap simulations. Székely GJ, Rizzo ML, Bakirov NK. (2007). <doi:10.1214/009053607000000505>. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. (2011). <doi:10.1126/science.1205438>.
Computes the optimal number of regions (or subdivisions) and their position in serial structures without a priori assumptions and to visualize the results. After reducing data dimensionality with the built-in function for data ordination, regions are fitted as segmented linear regressions along the serial structure. Every region boundary position and increasing number of regions are iteratively fitted and the best model (number of regions and boundary positions) is selected with an information criterion. This package expands on the previous regions package (Jones et al., Science 2018) with improved computation and more fitting and plotting options.
Visualizes multiple sequence alignments dynamically within the Shiny web application framework.
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
This package implements the MVOPR (Multi-View Orthogonal Projection Regression) method for robust variable selection and integration of multi-modality data.
Generates multivariate imputations using sequential regression with L2 penalty. For more details see Zahid and Heumann (2018) <doi:10.1177/0962280218755574>.
Weakly supervised (WS), multiple instance (MI) data lives in numerous interesting applications such as drug discovery, object detection, and tumor prediction on whole slide images. The mildsvm package provides an easy way to learn from this data by training Support Vector Machine (SVM)-based classifiers. It also contains helpful functions for building and printing multiple instance data frames. The core methods from mildsvm come from the following references: Kent and Yu (2024) <doi:10.1214/24-AOAS1876>; Xiao, Liu, and Hao (2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012) <https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>; Chu and Keerthi (2007) <doi:10.1162/neco.2007.19.3.792>; and Andrews et al. (2003) <https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf>. Many functions use the Gurobi optimization back-end to improve the optimization problem speed; the gurobi R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
Estimation methods for phase-type distribution (PH) and Markovian arrival process (MAP) from empirical data (point and grouped data) and density function. The tool is based on the following researches: Okamura et al. (2009) <doi:10.1109/TNET.2008.2008750>, Okamura and Dohi (2009) <doi:10.1109/QEST.2009.28>, Okamura et al. (2011) <doi:10.1016/j.peva.2011.04.001>, Okamura et al. (2013) <doi:10.1002/asmb.1919>, Horvath and Okamura (2013) <doi:10.1007/978-3-642-40725-3_10>, Okamura and Dohi (2016) <doi:10.15807/jorsj.59.72>.
Using this package, one can determine the minimum sample size required so that the absolute deviation of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.
This package provides supplemental functions for the mixRasch package (Willse, 2014), <https://cran.r-project.org/package=mixRasch/mixRasch.pdf> including a plotting function to compare item parameters for multiple class models and a function that provides average theta values for each class in a mixture model.
This package provides a number of functions to facilitate the handling and production of reports using time series data. The package was developed to be understandable for beginners, so some functions aim to transform processes that would be complex into functions with a few lines. The main advantage of using the metools package is the ease of producing reports and working with time series using a few lines of code, so the code is clean and easy to understand/maintain. Learn more about the metools at <https://metoolsr.wordpress.com>.
Leverages the R language to automate latent variable model estimation and interpretation using Mplus', a powerful latent variable modeling program developed by Muthen and Muthen (<https://www.statmodel.com>). Specifically, this package provides routines for creating related groups of models, running batches of models, and extracting and tabulating model parameters and fit statistics.
This package provides tools that facilitate ordinary differential equation (ODE) modeling in R'. This package allows one to perform simulations for ODE models that are encoded in the GNU MCSim model specification language (Bois, 2009) <doi:10.1093/bioinformatics/btp162> using ODE solvers from the R package deSolve (Soetaert et al., 2010) <doi:10.18637/jss.v033.i09>.
An implementation of the Monte Carlo techniques described in details by Dufour (2006) <doi:10.1016/j.jeconom.2005.06.007> and Dufour and Khalaf (2007) <doi:10.1002/9780470996249.ch24>. The two main features available are the Monte Carlo method with tie-breaker, mc(), for discrete statistics, and the Maximized Monte Carlo, mmc(), for statistics with nuisance parameters.
Mahalanobis-Taguchi (MT) system is a collection of multivariate analysis methods developed for the field of quality engineering. MT system consists of two families depending on their purpose. One is a family of Mahalanobis-Taguchi (MT) methods (in the broad sense) for diagnosis (see Woodall, W. H., Koudelik, R., Tsui, K. L., Kim, S. B., Stoumbos, Z. G., and Carvounis, C. P. (2003) <doi:10.1198/004017002188618626>) and the other is a family of Taguchi (T) methods for forecasting (see Kawada, H., and Nagata, Y. (2015) <doi:10.17929/tqs.1.12>). The MT package contains three basic methods for the family of MT methods and one basic method for the family of T methods. The MT method (in the narrow sense), the Mahalanobis-Taguchi Adjoint (MTA) methods, and the Recognition-Taguchi (RT) method are for the MT method and the two-sided Taguchi (T1) method is for the family of T methods. In addition, the Ta and Tb methods, which are the improved versions of the T1 method, are included.
Two distinct but related statistical approaches to the problem of identifying the combinations of medication error characteristics that are more likely to result in harm are implemented in this package: 1) a Bayesian hierarchical model with optimal Bayesian ranking on the log odds of harm, and 2) an empirical Bayes model that estimates the ratio of the observed count of harm to the count that would be expected if error characteristics and harm were independent. In addition, for the Bayesian hierarchical model, the package provides functions to assess the sensitivity of results to different specifications of the random effects distributions.
Implementation of the methodology of Aleshin-Guendel & Sadinle (2022) <doi:10.1080/01621459.2021.2013242>. It handles the general problem of multifile record linkage and duplicate detection, where any number of files are to be linked, and any of the files may have duplicates.