Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Model stability and variable inclusion plots [Mueller and Welsh (2010, <doi:10.1111/j.1751-5823.2010.00108.x>); Murray, Heritier and Mueller (2013, <doi:10.1002/sim.5855>)] as well as the adaptive fence [Jiang et al. (2008, <doi:10.1214/07-AOS517>); Jiang et al. (2009, <doi:10.1016/j.spl.2008.10.014>)] for linear and generalised linear models.
High-throughput, flexible and reproducible extraction of data from figures in primary research papers. metaDigitise() can extract data and / or automatically calculate summary statistics for users from box plots, bar plots (e.g., mean and errors), scatter plots and histograms.
This package provides tools for estimating, measuring, and analyzing migration data. Designed to assist researchers and analysts in working effectively with migration data.
Mapping Averaged Pairwise Information (MAPI) is an exploratory method providing graphical representations summarizing the spatial variation of pairwise metrics (eg. distance, similarity coefficient, ...) computed between georeferenced samples.
This project aims to make an accessible model for mosquito control resource optimization. The model uses data provided by users to estimate the mosquito populations in the sampling area for the sampling time period, and the optimal time to apply a treatment or multiple treatments.
Quantitative RT-PCR data are analyzed using generalized linear mixed models based on lognormal-Poisson error distribution, fitted using MCMC. Control genes are not required but can be incorporated as Bayesian priors or, when template abundances correlate with conditions, as trackers of global effects (common to all genes). The package also implements a lognormal model for higher-abundance data and a "classic" model involving multi-gene normalization on a by-sample basis. Several plotting functions are included to extract and visualize results. The detailed tutorial is available here: <https://matzlab.weebly.com/uploads/7/6/2/2/76229469/mcmc.qpcr.tutorial.v1.2.4.pdf>.
The MIDASim package is a microbiome data simulator for generating realistic microbiome datasets by adapting a user-provided template. It supports the controlled introduction of experimental signals-such as shifts in taxon relative abundances, prevalence, and sample library sizes-to create distinct synthetic populations under diverse simulation scenarios. For more details, see He et al. (2024) <doi:10.1186/s40168-024-01822-z>.
Read, inspect and process corpus files for quantitative corpus linguistics. Obtain concordances via regular expressions, tokenize texts, and compute frequencies and association measures. Useful for collocation analysis, keywords analysis and variationist studies (comparison of linguistic variants and of linguistic varieties).
This package provides a framework for multipurpose optimal resource allocation in survey sampling, extending the classical optimal allocation principles introduced by Tschuprow (1923) and Neyman (1934) to multidomain and multivariate allocation problems. The primary method mosalloc() allows for the consideration of precision and cost constraints at the subpopulation level while minimizing either a vector of sampling errors or survey costs across a broad range of optimal sample allocation problems. The approach supports both single- and multistage designs. For single-stage stratified random sampling, the mosallocSTRS() function offers a user- friendly interface. Sensitivity analysis is supported through the problem's dual variables, which are naturally obtained via the internal use of the Embedded Conic Solver from the ECOSolveR package. See Willems (2025, <doi:10.25353/ubtr-9200-484c-5c89>) for a detailed description of the theory behind MOSAlloc'.
Fused lasso method to cluster and estimate regression coefficients of the same covariate across different data sets when a large number of independent data sets are combined. Package supports Gaussian, binomial, Poisson and Cox PH models.
Conduct multi-locus genome-wide association study under the framework of multi-locus random-SNP-effect mixed linear model (mrMLM). First, each marker on the genome is scanned. Bonferroni correction is replaced by a less stringent selection criterion for significant test. Then, all the markers that are potentially associated with the trait are included in a multi-locus genetic model, their effects are estimated by empirical Bayes, and all the nonzero effects were further identified by likelihood ratio test for significant QTL. The program may run on a desktop or laptop computers. If marker genotypes in association mapping population are almost homozygous, these methods in this software are very effective. If there are many heterozygous marker genotypes, the IIIVmrMLM software is recommended. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2018, <doi:10.1093/bib/bbw145>), and Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH, Zuo JF, Zhang HQ, Chen Y, Zhang YM (2022, <doi:10.1016/j.molp.2022.02.012>).
This package provides multigroup Kitagawa-Blinder-Oaxaca ('mKBO') decompositions, that allow for more than two groups. Each group is compared to the sample average. For more details see Thaning and Nieuwenhuis (2025) <doi:10.31235/osf.io/6twvj_v1>.
This package provides methods for interpolating data in the Munsell color system following the ASTM D-1535 standard. Hues and chromas with decimal values can be interpolated and converted to/from the Munsell color system and CIE xyY, CIE XYZ, CIE Lab, CIE Luv, or RGB. Includes ISCC-NBS color block lookup. Based on the work by Paul Centore, "The Munsell and Kubelka-Munk Toolbox".
Automatically segments a 3D array of voxels into mutually exclusive morphological elements. This package extends existing work for segmenting 2D binary raster data. A paper documenting this approach has been accepted for publication in the journal Landscape Ecology. Detailed references will be updated here once those are known.
This package provides a comprehensive framework for analyzing agricultural nutrient balances across multiple spatial scales (county, HUC8', HUC2') with integration of wastewater treatment plant ('WWTP') effluent loads for both nitrogen and phosphorus. Supports classification of spatial units as nutrient sources, sinks, or balanced areas based on agricultural surplus and deficit calculations. Includes visualization tools, spatial transition probability analysis, and nutrient flow network mapping. Built-in datasets include agricultural nutrient balance data from the Nutrient Use Geographic Information System ('NuGIS'; The Fertilizer Institute and Plant Nutrition Canada, 1987-2016) <https://nugis.tfi.org/tabular_data/> and U.S. Environmental Protection Agency ('EPA') wastewater discharge data from the ECHO Discharge Monitoring Report ('DMR') Loading Tool (2007-2016) <https://echo.epa.gov/trends/loading-tool/water-pollution-search>. Data are downloaded on demand from the Open Science Framework ('OSF') repository to minimize package size while maintaining full functionality. The integrated manureshed framework methodology is described in Akanbi et al. (2025) <doi:10.1016/j.resconrec.2025.108697>. Designed for nutrient management planning, environmental analysis, and circular economy research at watershed/administrative to national scales. This material is based upon financial support by the National Science Foundation, EEC Division of Engineering Education and Centers, NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER), NSF 20-553 Gen-4 Engineering Research Centers award 2133576. We thank Dr. Robert D. Sabo (U.S. Environmental Protection Agency) for his valuable contributions to the conceptual development and review of this work.
This package performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2022), <arXiv:2208.14721>.
This package implements Multi-Calibration Boosting (2018) <https://proceedings.mlr.press/v80/hebert-johnson18a.html> and Multi-Accuracy Boosting (2019) <doi:10.48550/arXiv.1805.12317> for the multi-calibration of a machine learning model's prediction. MCBoost updates predictions for sub-groups in an iterative fashion in order to mitigate biases like poor calibration or large accuracy differences across subgroups. Multi-Calibration works best in scenarios where the underlying data & labels are unbiased, but resulting models are. This is often the case, e.g. when an algorithm fits a majority population while ignoring or under-fitting minority populations.
Perform the model confidence set procedure of Hansen et al (2011) <doi:10.3982/ECTA5771>.
This package provides tools for performing mathematical morphology operations, such as erosion and dilation, on data of arbitrary dimensionality. Can also be used for finding connected components, resampling, filtering, smoothing and other image processing-style operations.
Computes Control limits, coefficients of control limits, various performance metrics and depicts control charts for monitoring Maxwell-distributed quality characteristics.
This package implements Multi-Group Sparse Discriminant Analysis proposal of I.Gaynanova, J.Booth and M.Wells (2016), Simultaneous sparse estimation of canonical vectors in the p>>N setting, JASA <doi:10.1080/01621459.2015.1034318>.
This package provides a compilation of functions to create visually appealing and information-rich plots of meta-analytic data using ggplot2'. Currently allows to create forest plots, funnel plots, and many of their variants, such as rainforest plots, thick forest plots, additional evidence contour funnel plots, and sunset funnel plots. In addition, functionalities for visual inference with the funnel plot in the context of meta-analysis are provided.
It provides functions to compute the values of different modifications of the Rand and Wallace indices. The indices are used to measure the stability or similarity of two partitions obtained on two different sets of units with a non-empty intercept. Splitting and merging of clusters can (depends on the selected index) have a different effect on the value of the indices. The indices are proposed in Cugmas and Ferligoj (2018) <http://ibmi.mf.uni-lj.si/mz/2018/no-1/Cugmas2018.pdf>.
The Matthews correlation coefficient (MCC) score is calculated (Matthews BW (1975) <DOI:10.1016/0005-2795(75)90109-9>).