Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate the optimal maximin distance, minimax distance (only for low dimensions), and maximum projection designs within the class of Latin hypercube designs efficiently for computer experiments. Generate Pareto front optimal designs for each two of the three criteria and all the three criteria within the class of Latin hypercube designs efficiently. Provide criterion computing functions. References of this package can be found in Morris, M. D. and Mitchell, T. J. (1995) <doi:10.1016/0378-3758(94)00035-T>, Lu Lu and Christine M. Anderson-CookTimothy J. Robinson (2011) <doi:10.1198/Tech.2011.10087>, Joseph, V. R., Gul, E., and Ba, S. (2015) <doi:10.1093/biomet/asv002>.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
This package provides two important functions for producing Gain chart and Lift chart for any classification model.
Calculate the financial impact of using a churn model in terms of cost, revenue, profit and return on investment.
Compute important quantities when we consider stochastic systems that are observed continuously. Such as, Cost model, Limiting distribution, Transition matrix, Transition distribution and Occupancy matrix. The methods are described, for example, Ross S. (2014), Introduction to Probability Models. Eleven Edition. Academic Press.
This package provides a facility to generate various classes of fractional designs for order-of-addition experiments namely fractional order-of-additions orthogonal arrays, see Voelkel, Joseph G. (2019). "The design of order-of-addition experiments." Journal of Quality Technology 51:3, 230-241, <doi:10.1080/00224065.2019.1569958>. Provides facility to construct component orthogonal arrays, see Jian-Feng Yang, Fasheng Sun and Hongquan Xu (2020). "A Component Position Model, Analysis and Design for Order-of-Addition Experiments." Technometrics, <doi:10.1080/00401706.2020.1764394>. Supports generation of fractional designs for order-of-addition mixture experiments. Analysis of data from order-of-addition mixture experiments is also supported.
Matrix-Based Flexible Project Planning. This package models, plans, and schedules flexible, such as agile, extreme, and hybrid project plans. The package contains project planning, scheduling, and risk assessment functions. Kosztyan (2022) <doi:10.1016/j.softx.2022.100973>.
This package provides a suite of functions for performing analyses, based on a multiverse approach, for conditioning data. Specifically, given the appropriate data, the functions are able to perform t-tests, analyses of variance, and mixed models for the provided data and return summary statistics and plots. The function is also able to return for all those tests p-values, confidence intervals, and Bayes factors. The methods are described in Lonsdorf, Gerlicher, Klingelhofer-Jens, & Krypotos (2022) <doi:10.1016/j.brat.2022.104072>. Since November 2025, this package contains code from the ez R package (Copyright (c) 2016-11-01, Michael A. Lawrence <mike.lwrnc@gmail.com>), originally distributed under the GPL (equal and above 2) license.
Run the same analysis over a range of arbitrary data processing decisions. multitool provides an interface for creating alternative analysis pipelines and turning them into a grid of all possible pipelines. Using this grid as a blueprint, you can model your data across all possible pipelines and summarize the results.
Helping psychologists and other behavioural scientists to analyze mouse movement (and other 2-D trajectory) data. Bundles together several functions that compute spatial measures (e.g., maximum absolute deviation, area under the curve, sample entropy) or provide a shorthand for procedures that are frequently used (e.g., time normalization, linear interpolation, extracting initiation and movement times). For more information on these dependent measures, see Wirth et al. (2020) <doi:10.3758/s13428-020-01409-0>.
Software to aid in modeling and analyzing mass-spectrometry-based proteome melting data. Quantitative data is imported and normalized and thermal behavior is modeled at the protein level. Methods exist for normalization, modeling, visualization, and export of results. For a general introduction to MS-based thermal profiling, see Savitski et al. (2014) <doi:10.1126/science.1255784>.
Three estimating equation methods are provided in this package for marginal analysis of longitudinal ordinal data with misclassified responses and covariates. The naive analysis which is solely based on the observed data without adjustment may lead to bias. The corrected generalized estimating equations (GEE2) method which is unbiased requires the misclassification parameters to be known beforehand. The corrected generalized estimating equations (GEE2) with validation subsample method estimates the misclassification parameters based on a given validation set. This package is an implementation of Chen (2013) <doi:10.1002/bimj.201200195>.
This package provides methods for color labeling, calculation of eigengenes, merging of closely related modules.
This package implements the moment-matching approximation for differences of non-standardized t-distributed random variables in both univariate and multivariate settings. The package provides density, distribution function, quantile function, and random generation for the approximated distributions of t-differences. The methodology establishes the univariate approximated distributions through the systematic matching of the first, second, and fourth moments, and extends it to multivariate cases, considering both scenarios of independent components and the more general multivariate t-distributions with arbitrary dependence structures. Methods build on the classical moment-matching approximation method (e.g., Casella and Berger (2024) <doi:10.1201/9781003456285>).
Persistent interface to Macaulay2 <https://www.macaulay2.com> and front-end tools facilitating its use in the R ecosystem. For details see Kahle et. al. (2020) <doi:10.18637/jss.v093.i09>.
Generates internet memes that optionally include a superimposed inset plot and other atypical features, combining the visual impact of an attention-grabbing meme with graphic results of data analysis. The package differs from related packages that focus on imitating and reproducing standard memes. Some packages do this by interfacing with online meme generators whereas others achieve this natively. This package takes the latter approach. It does not interface with online meme generators or require any authentication with external websites. It reads images directly from local files or via URL and meme generation is done by the package. While this is similar to the meme package available on CRAN, it differs in that the focus is on allowing for non-standard meme layouts and hybrids of memes mixed with graphs. While this package can be used to make basic memes like an online meme generator would produce, it caters primarily to hybrid graph-meme plots where the meme presentation can be seen as a backdrop highlighting foreground graphs of data analysis results. The package also provides support for an arbitrary number of meme text labels with arbitrary size, position and other attributes rather than restricting to the standard top and/or bottom text placement. This is useful for proper aesthetic interleaving of plots of data between meme image backgrounds and overlain text labels. The package offers a selection of templates for graph placement and appearance with respect to the underlying meme. Graph templates also permit additional template-specific customization. Animated gif support is provided but this is optional and functional only if the magick package is installed. magick is not required unless gif functionality is desired.
Estimates probit, logit, Poisson, negative binomial, and beta regression models, returning their marginal effects, odds ratios, or incidence rate ratios as an output. Greene (2008, pp. 780-7) provides a textbook introduction to this topic.
Runs a Shiny web application that merges raw qPCR fluorescence data with related metadata to visualize species presence/absence detection patterns and assess data quality. The application calculates threshold values from raw fluorescence data using a method based on the second derivative method, Luu-The et al (2005) <doi:10.2144/05382RR05>, and utilizes the âchipPCRâ package by Rödiger, Burdukiewicz, & Schierack (2015) <doi:10.1093/bioinformatics/btv205> to calculate Cq values. The application has the ability to connect to a custom developed MySQL database to populate the applications interface. The application allows users to interact with visualizations such as a dynamic map, amplification curves and standard curves, that allow for zooming and/or filtering. It also enables the generation of customized exportable reports based on filtered mapping data.
Various reliability analysis methods for rare event inference (computing failure probability and quantile from model/function outputs).
Constructs trees for multivariate survival data using marginal and frailty models. Grows, prunes, and selects the best-sized tree.
Enables you to create accessible modal dialogs, with confidence and with minimal configuration.
This package provides a single function plotting Marradi's trees: a graphical representation of a numerical variable for comparing the variable mean and standard deviation across subgroups. See A. Marradi "L'analisi monovariata" (1993, ISBN: 9788820496876).
We provide the framework to analyze multiresolution partitions (e.g. country, provinces, subdistrict) where each individual data point belongs to only one partition in each layer (e.g. i belongs to subdistrict A, province P, and country Q). We assume that a partition in a higher layer subsumes lower-layer partitions (e.g. a nation is at the 1st layer subsumes all provinces at the 2nd layer). Given N individuals that have a pair of real values (x,y) that generated from independent variable X and dependent variable Y. Each individual i belongs to one partition per layer. Our goal is to find which partitions at which highest level that all individuals in the these partitions share the same linear model Y=f(X) where f is a linear function. The framework deploys the Minimum Description Length principle (MDL) to infer solutions. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2021) <doi:10.1145/3424670>.
This package provides an algorithm for creating mandalas. From the perspective of classic mathematical curves and rigid movements on the plane, the package allows you to select curves and produce mandalas from the curve. The algorithm was developed based on the book by Alcoforado et. al. entitled "Art, Geometry and Mandalas with R" (2022) in press by the USP Open Books Portal.