Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.
Perform the model confidence set procedure of Hansen et al (2011) <doi:10.3982/ECTA5771>.
This package provides functions used for graphing in multivariate contexts. These functions are designed to support produce reasonable graphs with minimal input of graphing parameters. The motivation for these functions was to support students learning multivariate concepts and R - there may be other functions and packages better-suited to practical data analysis. For details about the ellipse methods see Johnson and Wichern (2007, ISBN:9780131877153).
Fit growth curves to various known microbial growth models automatically to estimate growth parameters. Growth curves can be plotted with their uncertainty band. Growth models are: modified Gompertz model (Zwietering et al. (1990) <doi:10.1128/aem.56.6.1875-1881.1990>), Baranyi model (Baranyi and Roberts (1994) <doi:10.1016/0168-1605%2894%2990157-0>), Rosso model (Rosso et al. (1993) <doi:10.1006/jtbi.1993.1099>) and linear model (Dantigny (2005) <doi:10.1016/j.ijfoodmicro.2004.10.013>).
Create an immutable container holding metadata for the purpose of better enabling programming activities and functionality of other packages within the clinical programming workflow.
Implementation of two p-value combination techniques (inverse normal and Fisher methods). A vignette is provided to explain how to perform a meta-analysis from two independent RNA-seq experiments.
Detection of migration events and segments of continuous residence based on irregular time series of location data as published in Chi et al. (2020) <doi:10.1371/journal.pone.0239408>.
Defines colour palettes and themes for Michigan State University (MSU) publications and presentations. Palettes and themes are supported in both base R and ggplot2 graphics, and are intended to provide consistency between those creating documents and presentations.
An implementation of the additive (Gurevitch et al., 2000 <doi:10.1086/303337>) and multiplicative (Lajeunesse, 2011 <doi:10.1890/11-0423.1>) factorial null models for multiple stressor data (Burgess et al., 2021 <doi:10.1101/2021.07.21.453207>). Effect sizes are able to be calculated for either null model, and subsequently classified into one of four different interaction classifications (e.g., antagonistic or synergistic interactions). Analyses can be conducted on data for single experiments through to large meta-analytical datasets. Minimal input (or statistical knowledge) is required, with any output easily understood. Summary figures are also able to be easily generated.
Computes martingale difference correlation (MDC), martingale difference divergence, and their partial extensions to assess conditional mean dependence. The methods are based on Shao and Zhang (2014) <doi:10.1080/01621459.2014.887012>. Additionally, introduces a novel hypothesis test for evaluating covariate effects on the cure rate in mixture cure models, using MDC-based statistics. The methodology is described in Monroy-Castillo et al. (2025, manuscript submitted).
This package provides a flexible computational framework for mixture distributions with the focus on the composite models.
Compute the multiple Grubbs-Beck low-outlier test on positively distributed data and utilities for noninterpretive U.S. Geological Survey annual peak-streamflow data processing discussed in Cohn et al. (2013) <doi:10.1002/wrcr.20392> and England et al. (2017) <doi:10.3133/tm4B5>.
Evaluate bias and precision in method comparison studies. One provides measurements for each method and it takes care of the estimates. Multiple plots to evaluate bias, precision and compare methods.
This package implements random number generation, plotting, and estimation algorithms for the two-parameter one-sided and two-sided M-Wright (Mainardi-Wright) family. The M-Wright distributions naturally generalize the widely used one-sided (Airy and half-normal or half-Gaussian) and symmetric (Airy and Gaussian or normal) models. These are widely studied in time-fractional differential equations. References: Cahoy and Minkabo (2017) <doi:10.3233/MAS-170388>; Cahoy (2012) <doi:10.1007/s00180-011-0269-x>; Cahoy (2012) <doi:10.1080/03610926.2010.543299>; Cahoy (2011); Mainardi, Mura, and Pagnini (2010) <doi:10.1155/2010/104505>.
Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format.
Computes Monte Carlo standard errors for summaries of Monte Carlo output. Summaries and their standard errors are based on columns of Monte Carlo simulation output. Dennis D. Boos and Jason A. Osborne (2015) <doi:10.1111/insr.12087>.
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.
Data and code for the paper by Ehm, Gneiting, Jordan and Krueger ('Of Quantiles and Expectiles: Consistent Scoring Functions, Choquet Representations, and Forecast Rankings', JRSS-B, 2016 <DOI:10.1111/rssb.12154>).
Create legends for maps and other graphics. Thematic maps need to be accompanied by legible legends to be fully comprehensible. This package offers a wide range of legends useful for cartography, some of which may also be useful for other types of graphics.
Perform a mail merge (mass email) using the message defined in markdown, the recipients in a csv file, and gmail as the mailing engine. With this package you can parse markdown documents as the body of email, and the yaml header to specify the subject line of the email. Any braces in the email will be encoded with glue::glue()'. You can preview the email in the RStudio viewer pane, and send (draft) email using gmailr'.
Fits mixed Poisson regression models (Poisson-Inverse Gaussian or Negative-Binomial) on data sets with response variables being count data. The models can have varying precision parameter, where a linear regression structure (through a link function) is assumed to hold on the precision parameter. The Expectation-Maximization algorithm for both these models (Poisson Inverse Gaussian and Negative Binomial) is an important contribution of this package. Another important feature of this package is the set of functions to perform global and local influence analysis. See Barreto-Souza and Simas (2016) <doi:10.1007/s11222-015-9601-6> for further details.
This package provides a collection of functions to perform various meta-analytical models through a unified mixed-effects framework, including standard univariate fixed and random-effects meta-analysis and meta-regression, and non-standard extensions such as multivariate, multilevel, longitudinal, and dose-response models.
The stepwise regression with assumptions checking and the possible Box-Cox transformation.
Package for fast computation of the maximum kernel likelihood estimator (mkle).