Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R interface to POSIX mmap and Window's MapViewOfFile.
Datasets, constants, conversion factors, and utilities for MArine', Riverine', Estuarine', LAcustrine and Coastal science. The package contains among others: (1) chemical and physical constants and datasets, e.g. atomic weights, gas constants, the earths bathymetry; (2) conversion factors (e.g. gram to mol to liter, barometric units, temperature, salinity); (3) physical functions, e.g. to estimate concentrations of conservative substances, gas transfer and diffusion coefficients, the Coriolis force and gravity; (4) thermophysical properties of the seawater, as from the UNESCO polynomial or from the more recent derivation based on a Gibbs function.
Allows users to conduct multivariate distance matrix regression using analytic p-values and compute measures of effect size. For details on the method, see McArtor, Lubke, & Bergeman (2017) <doi:10.1007/s11336-016-9527-8>.
This package performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.
This package provides modules as an organizational unit for source code. Modules enforce to be more rigorous when defining dependencies and have a local search path. They can be used as a sub unit within packages or in scripts.
Generation of response patterns under dichotomous and polytomous computerized multistage testing (MST) framework. It holds various item response theory (IRT) and score-based methods to select the next module and estimate ability levels (Magis, Yan and von Davier (2017, ISBN:978-3-319-69218-0)).
Hypothesis tests for multivariate data. Tests for one and two mean vectors, multivariate analysis of variance, tests for one, two or more covariance matrices. References include: Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. ISBN: 978-0124712522. London: Academic Press.
Employing artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. The self-correction feature ensures the generated code is optimized for performance and accuracy. mergen features a user-friendly chat interface, enabling users to interact with the AI agent and extract valuable insights from their data effortlessly.
Create tile grid maps, which are like choropleth maps except each region is represented with equal visual space.
This package provides a color palette generator inspired by Mexican politics, with colors ranging from red on the left to gray in the middle and green on the right. Palette options range from only a few colors to several colors, but with discrete and continuous options to offer greatest flexibility to the user. This package allows for a range of applications, from mapping brief discrete scales (e.g., four colors for Morena, PRI, and PAN) to continuous interpolated arrays including dozens of shades graded from red to green.
This package provides a set of functions to obtain modified score test for generalized linear models.
The sample mean and standard deviation are two commonly used statistics in meta-analyses, but some trials use other summary statistics such as the median and quartiles to report the results. Therefore, researchers need to transform those information back to the sample mean and standard deviation. This package implemented sample mean estimators by Luo et al. (2016) <arXiv:1505.05687>, sample standard deviation estimators by Wan et al. (2014) <arXiv:1407.8038>, and the best linear unbiased estimators (BLUEs) of location and scale parameters by Yang et al. (2018, submitted) based on sample quantiles derived summaries in a meta-analysis.
This package provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arXiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arXiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.
This package provides a generalised workflow for Matching-Adjusted Indirect Comparison (MAIC) analysis, which supports both anchored and non-anchored MAIC methods. In MAIC, unbiased trial outcome comparison is achieved by weighting the subject-level outcomes of the intervention trial so that the weighted aggregate measures of prognostic or effect-modifying variables match those of the comparator trial. Measurements supported include time-to-event (e.g., overall survival) and binary (e.g., objective tumor response). The method is described in Signorovitch et al. (2010) <doi:10.2165/11538370-000000000-00000> and Signorovitch et al. (2012) <doi:10.1016/j.jval.2012.05.004>.
This package provides tools for calculating I-Scores, a simple way to measure how successful minor political parties are at influencing the major parties in their environment. I-Scores are designed to be a more comprehensive measurement of minor party success than vote share and legislative seats won, the current standard measurements, which do not reflect the strategies that most minor parties employ. The procedure leverages the Manifesto Project's NLP model to identify the issue areas that sentences discuss, see Burst et al. (2024) <doi:10.25522/manifesto.manifestoberta.56topics.context.2024.1.1>, and the Wordfish algorithm to estimate the relative positions that platforms take on those issue areas, see Slapin and Proksch (2008) <doi:10.1111/j.1540-5907.2008.00338.x>.
This package provides a framework based on S3 dispatch for constructing models of mosquito-borne pathogen transmission which are constructed from submodels of various components (i.e. immature and adult mosquitoes, human populations). A consistent mathematical expression for the distribution of bites on hosts means that different models (stochastic, deterministic, etc.) can be coherently incorporated and updated over a discrete time step.
To test whether the missing data mechanism, in a set of incompletely observed data, is one of missing completely at random (MCAR). For detailed description see Jamshidian, M. Jalal, S., and Jansen, C. (2014). "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)", Journal of Statistical Software, 56(6), 1-31. <https://www.jstatsoft.org/v56/i06/> <doi:10.18637/jss.v056.i06>.
This package implements an interface to the legacy Fortran code from O'Connell and Dobson (1984) <DOI:10.2307/2531148>. Implements Fortran 77 code for the methods developed by Schouten (1982) <DOI:10.1111/j.1467-9574.1982.tb00774.x>. Includes estimates of average agreement for each observer and average agreement for each subject.
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.
This package contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software JAGS (which should be installed locally and which is loaded in missingHE via the R package R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, missingHE provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.
This package provides a nature-inspired metaheuristic algorithm based on the echolocation behavior of microbats that uses frequency tuning to optimize problems in both continuous and discrete dimensions. This R package makes it easy to implement the standard bat algorithm on any user-supplied function. The algorithm was first developed by Xin-She Yang in 2010 (<DOI:10.1007/978-3-642-12538-6_6>, <DOI:10.1109/CINTI.2014.7028669>).
Offers an easy and automated way to scale up individual-level space use analysis to that of groups. Contains a function from the move package to calculate a dynamic Brownian bridge movement model from movement data for individual animals, as well as functions to visualize and quantify space use for individuals aggregated in groups. Originally written with passive acoustic telemetry in mind, this package also provides functionality to account for unbalanced acoustic receiver array designs, and satellite tag data.
This package provides a set of model-assisted survey estimators and corresponding variance estimators for single stage, unequal probability, without replacement sampling designs. All of the estimators can be written as a generalized regression estimator with the Horvitz-Thompson, ratio, post-stratified, and regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6). Two of the estimators employ a statistical learning model as the assisting model: the elastic net regression estimator, which is an extension of the lasso regression estimator given by McConville et al. (2017) <doi:10.1093/jssam/smw041>, and the regression tree estimator described in McConville and Toth (2017) <arXiv:1712.05708>. The variance estimators which approximate the joint inclusion probabilities can be found in Berger and Tille (2009) <doi:10.1016/S0169-7161(08)00002-3> and the bootstrap variance estimator is presented in Mashreghi et al. (2016) <doi:10.1214/16-SS113>.
This package provides an algorithm for creating mandalas. From the perspective of classic mathematical curves and rigid movements on the plane, the package allows you to select curves and produce mandalas from the curve. The algorithm was developed based on the book by Alcoforado et. al. entitled "Art, Geometry and Mandalas with R" (2022) in press by the USP Open Books Portal.