Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for model-based response dimension reduction. Usual dimension reduction methods in multivariate regression focus on the reduction of predictors, not responses. The response dimension reduction is theoretically founded in Yoo and Cook (2008) <doi:10.1016/j.csda.2008.07.029>. Later, three model-based response dimension reduction approaches are proposed in Yoo (2016) <doi:10.1080/02331888.2017.1410152> and Yoo (2019) <doi:10.1016/j.jkss.2019.02.001>. The method by Yoo and Cook (2008) is based on non-parametric ordinary least squares, but the model-based approaches are done through maximum likelihood estimation. For two model-based response dimension reduction methods called principal fitted response reduction and unstructured principal fitted response reduction, chi-squared tests are provided for determining the dimension of the response subspace.
This package provides classes and calculation and plotting functions for metrology applications, including measurement uncertainty estimation and inter-laboratory metrology comparison studies.
This package provides a tool to simulate salmon metapopulations and apply financial portfolio optimization concepts. The package accompanies the paper Anderson et al. (2015) <doi:10.1101/2022.03.24.485545>.
Used for general multiple mediation analysis. The analysis method is described in Yu and Li (2022) (ISBN: 9780367365479) "Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS", published by Chapman and Hall/CRC; and Yu et al.(2017) <DOI:10.1016/j.sste.2017.02.001> "Exploring racial disparity in obesity: a mediation analysis considering geo-coded environmental factors", published on Spatial and Spatio-temporal Epidemiology, 21, 13-23.
Given an image of a formula (typeset or handwritten) this package provides calls to the Mathpix service to produce the LaTeX code which should generate that image, and pastes it into a (e.g. an rmarkdown') document. See <https://docs.mathpix.com/> for full details. Mathpix is an external service and use of the API is subject to their terms and conditions.
Regression methods to quantify the relation between two measurement methods are provided by this package. In particular it addresses regression problems with errors in both variables and without repeated measurements. It implements the Clinical Laboratory Standard International (CLSI) recommendations (see J. A. Budd et al. (2018, <https://clsi.org/standards/products/method-evaluation/documents/ep09/>) for analytical method comparison and bias estimation using patient samples. Furthermore, algorithms for Theil-Sen and equivariant Passing-Bablok estimators are implemented, see F. Dufey (2020, <doi:10.1515/ijb-2019-0157>) and J. Raymaekers and F. Dufey (2022, <arXiv:2202:08060>). Further the robust M-Deming and MM-Deming (experimental) are available, see G. Pioda (2021, <arXiv:2105:04628>). A comprehensive overview over the implemented methods and references can be found in the manual pages mcrPioda-package and mcreg'.
Computation and visualization of matrix correlation coefficients. The main method is the Similarity of Matrices Index, while various related measures like r1, r2, r3, r4, Yanai's GCD, RV, RV2, adjusted RV, Rozeboom's linear correlation and Coxhead's coefficient are included for comparison and flexibility.
Generate the monotonic binning and perform the woe (weight of evidence) transformation for the logistic regression used in the consumer credit scorecard development. The woe transformation is a piecewise transformation that is linear to the log odds. For a numeric variable, all of its monotonic functional transformations will converge to the same woe transformation.
Mixed variable optimization for non-linear functions. Can optimize function whose inputs are a combination of continuous, ordered, and unordered variables.
Weakly supervised (WS), multiple instance (MI) data lives in numerous interesting applications such as drug discovery, object detection, and tumor prediction on whole slide images. The mildsvm package provides an easy way to learn from this data by training Support Vector Machine (SVM)-based classifiers. It also contains helpful functions for building and printing multiple instance data frames. The core methods from mildsvm come from the following references: Kent and Yu (2024) <doi:10.1214/24-AOAS1876>; Xiao, Liu, and Hao (2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012) <https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>; Chu and Keerthi (2007) <doi:10.1162/neco.2007.19.3.792>; and Andrews et al. (2003) <https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf>. Many functions use the Gurobi optimization back-end to improve the optimization problem speed; the gurobi R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
This package provides sample data sets that are used in statistics and data science courses at the Münster School of Business. The datasets refer to different business topics but also other domains, e.g. sports, traffic, etc.
Software to support the introductory *MOSAIC Calculus* textbook <https://www.mosaic-web.org/MOSAIC-Calculus/>), one of many data- and modeling-oriented educational resources developed by Project MOSAIC (<https://www.mosaic-web.org/>). Provides symbolic and numerical differentiation and integration, as well as support for applied linear algebra (for data science), and differential equations/dynamics. Includes grammar-of-graphics-based functions for drawing vector fields, trajectories, etc. The software is suitable for general use, but intended mainly for teaching calculus.
This package provides a simple informative powerful test (mvnTest()) for multivariate normality proposed by Zhou and Shao (2014) <doi:10.1080/02664763.2013.839637>, which combines kurtosis with Shapiro-Wilk test that is easy for biomedical researchers to understand and easy to implement in all dimensions. This package also contains some other multivariate normality tests including Fattorini's FA test (faTest()), Mardia's skewness and kurtosis test (mardia()), Henze-Zirkler's test (mhz()), Bowman and Shenton's test (msk()), Roystonâ s H test (msw()), and Villasenor-Alva and Gonzalez-Estrada's test (msw()). Empirical power calculation functions for these tests are also provided. In addition, this package includes some functions to generate several types of multivariate distributions mentioned in Zhou and Shao (2014).
This R package provides an implementation of multivariate extensions of a well-known fractal analysis technique, Detrended Fluctuations Analysis (DFA; Peng et al., 1995<doi:10.1063/1.166141>), for multivariate time series: multivariate DFA (mvDFA). Several coefficients are implemented that take into account the correlation structure of the multivariate time series to varying degrees. These coefficients may be used to analyze long memory and changes in the dynamic structure that would by univariate DFA. Therefore, this R package aims to extend and complement the original univariate DFA (Peng et al., 1995) for estimating the scaling properties of nonstationary time series.
This package provides methods for performing genetic risk prediction from genotype data. You can use it to perform risk prediction for individuals, or for families with missing data.
This package contains the datasets for use with the book Salvan, Sartori and Pace (2020, ISBN:978-88-470-4002-1) "Modelli Lineari Generalizzati".
Fast simulation from ordinary differential equation (ODE) based models typically employed in quantitative pharmacology and systems biology.
Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) <doi:10.1080/01621459.2016.1273115>. Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) <doi:10.18637/jss.v093.i05>.
This package performs causal mediation analysis for count and zero-inflated count data without or with a post-treatment confounder; calculates power to detect prespecified causal mediation effects, direct effects, and total effects; performs sensitivity analysis when there is a treatment- induced mediator-outcome confounder as described by Cheng, J., Cheng, N.F., Guo, Z., Gregorich, S., Ismail, A.I., Gansky, S.A. (2018) <doi:10.1177/0962280216686131>. Implements Instrumental Variable (IV) method to estimate the controlled (natural) direct and mediation effects, and compute the bootstrap Confidence Intervals as described by Guo, Z., Small, D.S., Gansky, S.A., Cheng, J. (2018) <doi:10.1111/rssc.12233>. This software was made possible by Grant R03DE028410 from the National Institute of Dental and Craniofacial Research, a component of the National Institutes of Health.
Power of non-parametric Mann-Kendall test and Spearmanâ s Rho test is highly influenced by serially correlated data. To address this issue, trend tests may be applied on the modified versions of the time series data by Block Bootstrapping (BBS), Prewhitening (PW) , Trend Free Prewhitening (TFPW), Bias Corrected Prewhitening and Variance Correction Approach by calculating effective sample size. Mann, H. B. (1945).<doi:10.1017/CBO9781107415324.004>. Kendall, M. (1975). Multivariate analysis. Charles Griffin&Company Ltd,. sen, P. K. (1968).<doi:10.2307/2285891>. à nöz, B., & Bayazit, M. (2012) <doi:10.1002/hyp.8438>. Hamed, K. H. (2009).<doi:10.1016/j.jhydrol.2009.01.040>. Yue, S., & Wang, C. Y. (2002) <doi:10.1029/2001WR000861>. Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002) <doi:10.1002/hyp.1095>. Hamed, K. H., & Ramachandra Rao, A. (1998) <doi:10.1016/S0022-1694(97)00125-X>. Yue, S., & Wang, C. Y. (2004) <doi:10.1023/B:WARM.0000043140.61082.60>.
This package contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models. The package is primarily related to the publications Komárek (2009, Comp. Stat. and Data Anal.) <doi:10.1016/j.csda.2009.05.006> and Komárek and Komárková (2014, J. of Stat. Soft.) <doi:10.18637/jss.v059.i12>. It also implements methods published in Komárek and Komárková (2013, Ann. of Appl. Stat.) <doi:10.1214/12-AOAS580>, Hughes, Komárek, Bonnett, Czanner, Garcà a-Fiñana (2017, Stat. in Med.) <doi:10.1002/sim.7397>, Jaspers, Komárek, Aerts (2018, Biom. J.) <doi:10.1002/bimj.201600253> and Hughes, Komárek, Czanner, Garcà a-Fiñana (2018, Stat. Meth. in Med. Res) <doi:10.1177/0962280216674496>.
This package provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.
Estimates the multi-level vector autoregression model on time-series data. Three network structures are obtained: temporal networks, contemporaneous networks and between-subjects networks.
Fit mixture of Markov chains of higher orders from multiple sequences. It is also compatible with ordinary 1-component, 1-order or single-sequence Markov chains. Various utility functions are provided to derive transition patterns, transition probabilities per component and component priors. In addition, print(), predict() and component extracting/replacing methods are also defined as a convention of mixture models.