_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-makemyprior 1.2.2
Propagated dependencies: r-visnetwork@2.1.4 r-shinyjs@2.1.0 r-shinybs@0.61.1 r-shiny@1.11.1 r-rlang@1.1.6 r-matrix@1.7-4 r-mass@7.3-65 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ingebogh/makemyprior
Licenses: GPL 2+
Build system: r
Synopsis: Intuitive Construction of Joint Priors for Variance Parameters
Description:

Tool for easy prior construction and visualization. It helps to formulates joint prior distributions for variance parameters in latent Gaussian models. The resulting prior is robust and can be created in an intuitive way. A graphical user interface (GUI) can be used to choose the joint prior, where the user can click through the model and select priors. An extensive guide is available in the GUI. The package allows for direct inference with the specified model and prior. Using a hierarchical variance decomposition, we formulate a joint variance prior that takes the whole model structure into account. In this way, existing knowledge can intuitively be incorporated at the level it applies to. Alternatively, one can use independent variance priors for each model components in the latent Gaussian model. Details can be found in the accompanying scientific paper: Hem, Fuglstad, Riebler (2024, Journal of Statistical Software, <doi:10.18637/jss.v110.i03>).

emacs-ob-rust 20220824.1923
Channel: yewscion
Location: cdr255/emacs.scm (cdr255 emacs)
Home page: https://github.com/micanzhang/ob-rust
Licenses: GPL 3+
Build system: emacs
Synopsis: Org-babel functions for Rust
Description:

Org-Babel support for evaluating rust code. Much of this is modeled after `ob-C'. Just like the `ob-C', you can specify :flags headers when compiling with the "rust run" command. Unlike `ob-C', you can also specify :args which can be a list of arguments to pass to the binary. If you quote the value passed into the list, it will use `ob-ref to find the reference data. If you do not include a main function or a package name, `ob-rust will provide it for you and it's the only way to properly use very limited implementation: - currently only support :results output. ; Requirements: - You must have rust and cargo installed and the rust and cargo should be in your `exec-path rust command. - rust-script - `rust-mode is also recommended for syntax highlighting and formatting. Not this particularly needs it, it just assumes you have it.

r-inventorize 1.1.2
Propagated dependencies: r-tidyr@1.3.1 r-plyr@1.8.9 r-plotly@4.11.0 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=inventorize
Licenses: GPL 3
Build system: r
Synopsis: Inventory Analytics, Pricing and Markdowns
Description:

Simulate inventory policies with and without forecasting, facilitate inventory analysis calculations such as stock levels and re-order points,pricing and promotions calculations. The package includes calculations of inventory metrics, stock-out calculations and ABC analysis calculations. The package includes revenue management techniques such as Multi-product optimization,logit and polynomial model optimization. The functions are referenced from : 1-Harris, Ford W. (1913). "How many parts to make at once". Factory, The Magazine of Management. 2- Nahmias, S. Production and Operations Analysis. McGraw-Hill International Edition. 3-Silver, E.A., Pyke, D.F., Peterson, R. Inventory Management and Production Planning and Scheduling. 4-Ballou, R.H. Business Logistics Management. 5-MIT Micromasters Program. 6- Columbia University course for supply and demand analysis. 8- Price Elasticity of Demand MATH 104,Mark Mac Lean (with assistance from Patrick Chan) 2011W For further details or correspondence :<www.linkedin.com/in/haythamomar>, <www.rescaleanalytics.com>.

r-pldamixture 0.1.1
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/bpriy/pldamixture
Licenses: GPL 2
Build system: r
Synopsis: Post-Linkage Data Analysis Based on Mixture Modelling
Description:

Perform inference in the secondary analysis setting with linked data potentially containing mismatch errors. Only the linked data file may be accessible and information about the record linkage process may be limited or unavailable. Implements the General Framework for Regression with Mismatched Data developed by Slawski et al. (2023) <doi:10.48550/arXiv.2306.00909>. The framework uses a mixture model for pairs of linked records whose two components reflect distributions conditional on match status, i.e., correct match or mismatch. Inference is based on composite likelihood and the Expectation-Maximization (EM) algorithm. The package currently supports Cox Proportional Hazards Regression (right-censored data only) and Generalized Linear Regression Models (Gaussian, Gamma, Poisson, and Logistic (binary models only)). Information about the underlying record linkage process can be incorporated into the method if available (e.g., assumed overall mismatch rate, safe matches, predictors of match status, or predicted probabilities of correct matches).

r-stjoincount 1.12.0
Propagated dependencies: r-summarizedexperiment@1.40.0 r-spdep@1.4-1 r-spatialexperiment@1.20.0 r-sp@2.2-0 r-seurat@5.3.1 r-raster@3.6-32 r-pheatmap@1.0.13 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-bioc
Location: guix-bioc/packages/s.scm (guix-bioc packages s)
Home page: https://github.com/Nina-Song/stJoincount
Licenses: Expat
Build system: r
Synopsis: stJoincount - Join count statistic for quantifying spatial correlation between clusters
Description:

stJoincount facilitates the application of join count analysis to spatial transcriptomic data generated from the 10x Genomics Visium platform. This tool first converts a labeled spatial tissue map into a raster object, in which each spatial feature is represented by a pixel coded by label assignment. This process includes automatic calculation of optimal raster resolution and extent for the sample. A neighbors list is then created from the rasterized sample, in which adjacent and diagonal neighbors for each pixel are identified. After adding binary spatial weights to the neighbors list, a multi-categorical join count analysis is performed to tabulate "joins" between all possible combinations of label pairs. The function returns the observed join counts, the expected count under conditions of spatial randomness, and the variance calculated under non-free sampling. The z-score is then calculated as the difference between observed and expected counts, divided by the square root of the variance.

r-bentcablear 0.3.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bentcableAR
Licenses: GPL 3+
Build system: r
Synopsis: Bent-Cable Regression for Independent Data or Autoregressive Time Series
Description:

Included are two main interfaces, bentcable.ar() and bentcable.dev.plot(), for fitting and diagnosing bent-cable regressions for autoregressive time-series data (Chiu and Lockhart 2010, <doi:10.1002/cjs.10070>) or independent data (time series or otherwise - Chiu, Lockhart and Routledge 2006, <doi:10.1198/016214505000001177>). Some components in the package can also be used as stand-alone functions. The bent cable (linear-quadratic-linear) generalizes the broken stick (linear-linear), which is also handled by this package. Version 0.2 corrected a glitch in the computation of confidence intervals for the CTP. References that were updated from Versions 0.2.1 and 0.2.2 appear in Version 0.2.3 and up. Version 0.3.0 improved robustness of the error-message producing mechanism. Version 0.3.1 improves the NAMESPACE file of the package. It is the author's intention to distribute any future updates via GitHub.

r-cgmquantify 0.1.0
Propagated dependencies: r-tidyverse@2.0.0 r-magrittr@2.0.4 r-hms@1.1.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cgmquantify
Licenses: FSDG-compatible
Build system: r
Synopsis: Analyzing Glucose and Glucose Variability
Description:

Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.

r-countfitter 1.5
Propagated dependencies: r-shiny@1.11.1 r-pscl@1.5.9 r-mass@7.3-65 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/BioGenies/countfitteR
Licenses: GPL 3
Build system: r
Synopsis: Comprehensive Automatized Evaluation of Distribution Models for Count Data
Description:

This package provides a large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.

r-dinamic-duo 1.0.4
Dependencies: python@3.11.14
Propagated dependencies: r-plyr@1.8.9 r-httr@1.4.7 r-dinamic@1.0.1 r-biomart@2.66.0
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DiNAMIC.Duo
Licenses: GPL 3
Build system: r
Synopsis: Finding Recurrent DNA Copy Number Alterations and Differences
Description:

In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. Here we use cyclic shift permutations to identify recurrent copy number alterations in a single cohort or recurrent copy number differences in two cohorts based on a common set of genomic markers. Additional functionality is provided to perform downstream analyses, including the creation of summary files and graphics. DiNAMIC.Duo builds upon the original DiNAMIC package of Walter et al. (2011) <doi:10.1093/bioinformatics/btq717> and leverages the theory developed in Walter et al. (2015) <doi:10.1093/biomet/asv046>. An article describing DiNAMIC.Duo by Walter et al. (2022) can be found at <doi: 10.1093/bioinformatics/btac542>.

r-gwas2crispr 0.1.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-readr@2.1.6 r-purrr@1.2.0 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/leopard0ly/gwas2crispr
Licenses: Expat
Build system: r
Synopsis: GWAS-to-CRISPR Data Pipeline for High-Throughput SNP Target Extraction
Description:

This package provides a reproducible pipeline to conduct genomeâ wide association studies (GWAS) and extract singleâ nucleotide polymorphisms (SNPs) for a human trait or disease. Given aggregated GWAS dataset(s) and a userâ defined significance threshold, the package retrieves significant SNPs from the GWAS Catalog and the Experimental Factor Ontology (EFO), annotates their gene context, and can write a harmonised metadata table in comma-separated values (CSV) format, genomic intervals in the Browser Extensible Data (BED) format, and sequences in the FASTA (text-based sequence) format with user-defined flanking regions for clustered regularly interspaced short palindromic repeats (CRISPR) guide design. For details on the resources and methods see: Buniello et al. (2019) <doi:10.1093/nar/gky1120>; Sollis et al. (2023) <doi:10.1093/nar/gkac1010>; Jinek et al. (2012) <doi:10.1126/science.1225829>; Malone et al. (2010) <doi:10.1093/bioinformatics/btq099>; Experimental Factor Ontology (EFO) <https://www.ebi.ac.uk/efo>.

r-lineartestr 1.0.0
Propagated dependencies: r-viridis@0.6.5 r-tidyr@1.3.1 r-sandwich@3.1-1 r-readr@2.1.6 r-matrix@1.7-4 r-ggplot2@4.0.1 r-forecast@8.24.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/FedericoGarza/lineartestr
Licenses: GPL 2+
Build system: r
Synopsis: Linear Specification Testing
Description:

Tests whether the linear hypothesis of a model is correct specified using Dominguez-Lobato test. Also Ramsey's RESET (Regression Equation Specification Error Test) test is implemented and Wald tests can be carried out. Although RESET test is widely used to test the linear hypothesis of a model, Dominguez and Lobato (2019) proposed a novel approach that generalizes well known specification tests such as Ramsey's. This test relies on wild-bootstrap; this package implements this approach to be usable with any function that fits linear models and is compatible with the update() function such as stats'::lm(), lfe'::felm() and forecast'::Arima(), for ARMA (autoregressiveâ moving-average) models. Also the package can handle custom statistics such as Cramer von Mises and Kolmogorov Smirnov, described by the authors, and custom distributions such as Mammen (discrete and continuous) and Rademacher. Manuel A. Dominguez & Ignacio N. Lobato (2019) <doi:10.1080/07474938.2019.1687116>.

r-binequality 1.0.4
Propagated dependencies: r-survival@3.8-3 r-ineq@0.2-13 r-gamlss-dist@6.1-1 r-gamlss-cens@5.0-7 r-gamlss@5.5-0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=binequality
Licenses: GPL 3+
Build system: r
Synopsis: Methods for Analyzing Binned Income Data
Description:

This package provides methods for model selection, model averaging, and calculating metrics, such as the Gini, Theil, Mean Log Deviation, etc, on binned income data where the topmost bin is right-censored. We provide both a non-parametric method, termed the bounded midpoint estimator (BME), which assigns cases to their bin midpoints; except for the censored bins, where cases are assigned to an income estimated by fitting a Pareto distribution. Because the usual Pareto estimate can be inaccurate or undefined, especially in small samples, we implement a bounded Pareto estimate that yields much better results. We also provide a parametric approach, which fits distributions from the generalized beta (GB) family. Because some GB distributions can have poor fit or undefined estimates, we fit 10 GB-family distributions and use multimodel inference to obtain definite estimates from the best-fitting distributions. We also provide binned income data from all United States of America school districts, counties, and states.

r-pooledpeaks 1.2.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-qpdf@1.4.1 r-pdftools@3.6.0 r-magrittr@2.0.4 r-fragman@1.0.9 r-dplyr@1.1.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/kmkuesters/pooledpeaks
Licenses: GPL 3+
Build system: r
Synopsis: Genetic Analysis of Pooled Samples
Description:

Analyzing genetic data obtained from pooled samples. This package can read in Fragment Analysis output files, process the data, and score peaks, as well as facilitate various analyses, including cluster analysis, calculation of genetic distances and diversity indices, as well as bootstrap resampling for statistical inference. Specifically tailored to handle genetic data efficiently, researchers can explore population structure, genetic differentiation, and genetic relatedness among samples. We updated some functions from Covarrubias-Pazaran et al. (2016) <doi:10.1186/s12863-016-0365-6> to allow for the use of new file formats and referenced the following to write our genetic analysis functions: Long et al. (2022) <doi:10.1038/s41598-022-04776-0>, Jost (2008) <doi:10.1111/j.1365-294x.2008.03887.x>, Nei (1973) <doi:10.1073/pnas.70.12.3321>, Foulley et al. (2006) <doi:10.1016/j.livprodsci.2005.10.021>, Chao et al. (2008) <doi:10.1111/j.1541-0420.2008.01010.x>.

r-petersenlab 1.2.0
Propagated dependencies: r-xtable@1.8-4 r-viridislite@0.4.2 r-tidyselect@1.2.1 r-stringr@1.6.0 r-scales@1.4.0 r-reshape2@1.4.5 r-rcolorbrewer@1.1-3 r-purrr@1.2.0 r-psych@2.5.6 r-plyr@1.8.9 r-nlme@3.1-168 r-mvtnorm@1.3-3 r-mix@1.0-13 r-mitools@2.4 r-lme4@1.1-37 r-lavaan@0.6-20 r-hmisc@5.2-4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-digest@0.6.39
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/DevPsyLab/petersenlab
Licenses: Expat
Build system: r
Synopsis: Collection of R Functions by the Petersen Lab
Description:

This package provides a collection of R functions that are widely used by the Petersen Lab. Included are functions for various purposes, including evaluating the accuracy of judgments and predictions, performing scoring of assessments, generating correlation matrices, conversion of data between various types, data management, psychometric evaluation, extensions related to latent variable modeling, various plotting capabilities, and other miscellaneous useful functions. By making the package available, we hope to make our methods reproducible and replicable by others and to help others perform their data processing and analysis methods more easily and efficiently. The codebase is provided in Petersen (2025) <doi:10.5281/zenodo.7602890> and on CRAN': <doi: 10.32614/CRAN.package.petersenlab>. The package is described in "Principles of Psychological Assessment: With Applied Examples in R" (Petersen, 2024, 2025a) <doi:10.1201/9781003357421>, <doi:10.25820/work.007199>, <doi:10.5281/zenodo.6466589> and in "Fantasy Football Analytics: Statistics, Prediction, and Empiricism Using R" (Petersen, 2025b).

r-gdcrnatools 1.30.0
Propagated dependencies: r-xml@3.99-0.20 r-survminer@0.5.1 r-survival@3.8-3 r-shiny@1.11.1 r-rjson@0.2.23 r-pathview@1.50.0 r-org-hs-eg-db@3.22.0 r-limma@3.66.0 r-jsonlite@2.0.0 r-gplots@3.2.0 r-ggplot2@4.0.1 r-genomicdatacommons@1.34.1 r-edger@4.8.0 r-dt@0.34.0 r-dose@4.4.0 r-deseq2@1.50.2 r-clusterprofiler@4.18.2 r-biomart@2.66.0 r-biocparallel@1.44.0
Channel: guix-bioc
Location: guix-bioc/packages/g.scm (guix-bioc packages g)
Home page: https://bioconductor.org/packages/GDCRNATools
Licenses: Artistic License 2.0
Build system: r
Synopsis: GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, mRNA, and miRNA data in GDC
Description:

This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer. Three databases of lncRNA-miRNA interactions including spongeScan, starBase, and miRcode, as well as three databases of mRNA-miRNA interactions including miRTarBase, starBase, and miRcode are incorporated into the package for ceRNAs network construction. limma, edgeR, and DESeq2 can be used to identify differentially expressed genes/miRNAs. Functional enrichment analyses including GO, KEGG, and DO can be performed based on the clusterProfiler and DO packages. Both univariate CoxPH and KM survival analyses of multiple genes can be implemented in the package. Besides some routine visualization functions such as volcano plot, bar plot, and KM plot, a few simply shiny apps are developed to facilitate visualization of results on a local webpage.

r-unityforest 0.1.0
Propagated dependencies: r-scales@1.4.0 r-rlang@1.1.6 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-matrix@1.7-4 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/u.scm (guix-cran packages u)
Home page: https://cran.r-project.org/package=unityForest
Licenses: GPL 3
Build system: r
Synopsis: Improving Interaction Modelling and Interpretability in Random Forests
Description:

Implementation of the unity forest (UFO) framework (Hornung & Hapfelmeier, 2026, <doi:10.48550/arXiv.2601.07003>). UFOs are a random forest variant designed to better take covariates with purely interaction-based effects into account, including interactions for which none of the involved covariates exhibits a marginal effect. While this framework tends to improve discrimination and predictive accuracy compared to standard random forests, it also facilitates the identification and interpretation of (marginal or interactive) effects: In addition to the UFO algorithm for tree construction, the package includes the unity variable importance measure (unity VIM), which quantifies covariate effects under the conditions in which they are strongest - either marginally or within subgroups defined by interactions - as well as covariate-representative tree roots (CRTRs) that provide interpretable visualizations of these conditions. Currently, only classification is supported. This package is a fork of the R package ranger (main author: Marvin N. Wright), which implements random forests using an efficient C++ backend.

r-mrtanalysis 0.4.1
Propagated dependencies: r-sandwich@3.1-1 r-rootsolve@1.8.2.4 r-ranger@0.17.0 r-randomforest@4.7-1.2 r-mgcv@1.9-4 r-geepack@1.3.13 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MRTAnalysis
Licenses: GPL 3
Build system: r
Synopsis: Assessing Proximal, Distal, and Mediated Causal Excursion Effects for Micro-Randomized Trials
Description:

This package provides methods to analyze micro-randomized trials (MRTs) with binary treatment options. Supports four types of analyses: (1) proximal causal excursion effects, including weighted and centered least squares (WCLS) for continuous proximal outcomes by Boruvka et al. (2018) <doi:10.1080/01621459.2017.1305274> and the estimator for marginal excursion effect (EMEE) for binary proximal outcomes by Qian et al. (2021) <doi:10.1093/biomet/asaa070>; (2) distal causal excursion effects (DCEE) for continuous distal outcomes using a two-stage estimator by Qian (2025) <doi:10.1093/biomtc/ujaf134>; (3) mediated causal excursion effects (MCEE) for continuous distal outcomes, estimating natural direct and indirect excursion effects in the presence of time-varying mediators by Qian (2025) <doi:10.48550/arXiv.2506.20027>; and (4) standardized proximal effect size estimation for continuous proximal outcomes, generalizing the approach in Luers et al. (2019) <doi:10.1007/s11121-017-0862-5> to allow adjustment for baseline and time-varying covariates for improved efficiency.

r-survrm2perm 0.1.0
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=survRM2perm
Licenses: GPL 2
Build system: r
Synopsis: Permutation Test for Comparing Restricted Mean Survival Time
Description:

This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.

r-datastreamr 2.0.4
Propagated dependencies: r-stringr@1.6.0 r-logger@0.4.1 r-jsonlite@2.0.0 r-ini@0.3.1 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DatastreamR
Licenses: GPL 3+
Build system: r
Synopsis: Datastream API
Description:

Access Datastream content through <https://product.datastream.com/dswsclient/Docs/Default.aspx>., our historical financial database with over 35 million individual instruments or indicators across all major asset classes, including over 19 million active economic indicators. It features 120 years of data, across 175 countries â the information you need to interpret market trends, economic cycles, and the impact of world events. Data spans bond indices, bonds, commodities, convertibles, credit default swaps, derivatives, economics, energy, equities, equity indices, ESG, estimates, exchange rates, fixed income, funds, fundamentals, interest rates, and investment trusts. Unique content includes I/B/E/S Estimates, Worldscope Fundamentals, point-in-time data, and Reuters Polls. Alongside the content, sit a set of powerful analytical tools for exploring relationships between different asset types, with a library of customizable analytical functions. In-house timeseries can also be uploaded using the package to comingle with Datastream maintained datasets, use with these analytical tools and displayed in Datastreamâ s flexible charting facilities in Microsoft Office.

r-ipadmixture 0.1.2
Propagated dependencies: r-treemap@2.4-4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/DarkEyes/ipADMIXTURE
Licenses: GPL 3
Build system: r
Synopsis: Iterative Pruning Population Admixture Inference Framework
Description:

This package provides a data clustering package based on admixture ratios (Q matrix) of population structure. The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K* that makes majority of members of two clusters are in the different clusters. This K* reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K* clusters based on maximum admixture ratio of individuals. The publication of this package is at Chainarong Amornbunchornvej, Pongsakorn Wangkumhang, and Sissades Tongsima (2020) <doi:10.1101/2020.03.21.001206>.

r-spoccupancy 0.8.0
Propagated dependencies: r-spabundance@0.2.1 r-rann@2.6.2 r-lme4@1.1-37 r-foreach@1.5.2 r-doparallel@1.0.17 r-coda@0.19-4.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.doserlab.com/files/spoccupancy-web
Licenses: GPL 3+
Build system: r
Synopsis: Single-Species, Multi-Species, and Integrated Spatial Occupancy Models
Description:

Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation detailed in Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Spatial models are fit using either Gaussian processes or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Provides functionality for data integration of multiple single-species occupancy data sets using a joint likelihood framework. Details on data integration are given in Miller, Pacifici, Sanderlin, and Reich (2019) <doi:10.1111/2041-210X.13110>. Details on single-species and multi-species models are found in MacKenzie, Nichols, Lachman, Droege, Royle, and Langtimm (2002) <doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2> and Dorazio and Royle <doi:10.1198/016214505000000015>, respectively.

r-magmaclustr 1.2.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-rcpp@1.1.0 r-purrr@1.2.0 r-plyr@1.8.9 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ArthurLeroy/MagmaClustR
Licenses: Expat
Build system: r
Synopsis: Clustering and Prediction using Multi-Task Gaussian Processes with Common Mean
Description:

An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called Magma and MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2023) <https://jmlr.org/papers/v24/20-1321.html>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). MagmaClust is a generalisation of Magma where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.

r-onewaytests 3.1
Propagated dependencies: r-wesanderson@0.3.7 r-nortest@1.0-4 r-moments@0.14.1 r-ggplot2@4.0.1 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=onewaytests
Licenses: GPL 2+
Build system: r
Synopsis: One-Way Tests in Independent Groups Designs
Description:

This package performs one-way tests in independent groups designs including homoscedastic and heteroscedastic tests. These are one-way analysis of variance (ANOVA), Welch's heteroscedastic F test, Welch's heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test, Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests, Alvandi's F test, Alvandi's generalized p-value, approximate F test, B square test, Cochran test, Weerahandi's generalized F test, modified Brown-Forsythe test, adjusted Welch's heteroscedastic F test, Welch-Aspin test, Permutation F test. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student's t test, Welch's t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).

r-evchargcost 0.1.0
Propagated dependencies: r-ggplot2@4.0.1 r-cowplot@1.2.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EVchargcost
Licenses: GPL 3
Build system: r
Synopsis: Computes and Plot the Optimal Charging Strategy for Electric Vehicles
Description:

The purpose of this library is to compute the optimal charging cost function for a electric vehicle (EV). It is well known that the charging function of a EV is a concave function that can be approximated by a piece-wise linear function, so bigger the state of charge, slower the charging process is. Moreover, the other important function is the one that gives the electricity price. This function is usually step-wise, since depending on the time of the day, the price of the electricity is different. Then, the problem of charging an EV to a certain state of charge is not trivial. This library implements an algorithm to compute the optimal charging cost function, that is, it plots for a given state of charge r (between 0 and 1) the minimum cost we need to pay in order to charge the EV to that state of charge r. The details of the algorithm are described in González-Rodrà guez et at (2023) <https://inria.hal.science/hal-04362876v1>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
Total results: 30580