Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Import bathymetric and hypsometric data from the NOAA (National Oceanic and Atmospheric Administration, <https://www.ncei.noaa.gov/products/etopo-global-relief-model>), GEBCO (General Bathymetric Chart of the Oceans, <https://www.gebco.net>) and other sources, plot xyz data to prepare publication-ready figures, analyze xyz data to extract transects, get depth / altitude based on geographical coordinates, or calculate z-constrained least-cost paths.
The Mapper algorithm from Topological Data Analysis, the steps are as follows 1. Define a filter (lens) function on the data. 2. Perform clustering within each level set. 3. Generate a complex from the clustering results.
Extract textual data from different media channels through its source based on users choice of keywords. These data can be used to perform text analysis to identify patterns in respective media reporting. The media channels used in this package are print media. The data (or news) used are publicly available to consumers.
Mixed, low-rank, and sparse multivariate regression ('mixedLSR') provides tools for performing mixture regression when the coefficient matrix is low-rank and sparse. mixedLSR allows subgroup identification by alternating optimization with simulated annealing to encourage global optimum convergence. This method is data-adaptive, automatically performing parameter selection to identify low-rank substructures in the coefficient matrix.
This package provides methods for modeling moderator variables in cross-sectional, temporal, and multi-level networks. Includes model selection techniques and a variety of plotting functions. Implements the methods described by Swanson (2020) <https://www.proquest.com/openview/d151ab6b93ad47e3f0d5e59d7b6fd3d3>.
Computation of various Markovian models for categorical data including homogeneous Markov chains of any order, MTD models, Hidden Markov models, and Double Chain Markov Models.
This is the very popular mine sweeper game! The game requires you to find out tiles that contain mines through clues from unmasking neighboring tiles. Each tile that does not contain a mine shows the number of mines in its adjacent tiles. If you unmask all tiles that do not contain mines, you win the game; if you unmask any tile that contains a mine, you lose the game. For further game instructions, please run `help(run_game)` and check details. This game runs in X11-compatible devices with `grDevices::x11()`.
Similarity plots based on correlation and median absolute deviation (MAD); adjusting colors for heatmaps; aggregate technical replicates; calculate pairwise fold-changes and log fold-changes; compute one- and two-way ANOVA; simplified interface to package limma (Ritchie et al. (2015), <doi:10.1093/nar/gkv007> ) for moderated t-test and one-way ANOVA; Hamming and Levenshtein (edit) distance of strings as well as optimal alignment scores for global (Needleman-Wunsch) and local (Smith-Waterman) alignments with constant gap penalties (Merkl and Waack (2009), ISBN:978-3-527-32594-8).
Multi-criteria design of experiments algorithm that simultaneously optimizes up to six different criteria ('I', Id', D', Ds', A and As'). The algorithm finds the optimal Pareto front and, if requested, selects a possible symmetrical design on it. The symmetrical design is selected based on two techniques: minimum distance with the Utopia point or the TOPSIS approach.
Models and predicts multiple output features in single random forest considering the linear relation among the output features, see details in Rahman et al (2017)<doi:10.1093/bioinformatics/btw765>.
Calculates multi-scale geomorphometric terrain attributes from regularly gridded digital terrain models using a variable focal windows size (Ilich et al. (2023) <doi:10.1111/tgis.13067>).
This package provides a hybrid of the K-means algorithm and a Majorization-Minimization method to introduce a robust clustering. The reference paper is: Julien Mairal, (2015) <doi:10.1137/140957639>. The two most important functions in package MajMinKmeans are cluster_km() and cluster_MajKm(). Cluster_km() clusters data without Majorization-Minimization and cluster_MajKm() clusters data with Majorization-Minimization method. Both of these functions calculate the sum of squares (SS) of clustering. Another useful function is MajMinOptim(), which helps to find the optimum values of the Majorization-Minimization estimator.
This package performs the execution of the main procedures of multiple comparisons in the literature, Scott-Knott (1974) <http://www.jstor.org/stable/2529204>, Batista (2016) <http://repositorio.ufla.br/jspui/handle/1/11466>, including graphic representations and export to different extensions of its results. An additional part of the package is the presence of the performance evaluation of the tests (Type I error per experiment and the power). This will assist the user in making the decision for the chosen test.
Data sets and sample analyses from Pinheiro and Bates, "Mixed-effects Models in S and S-PLUS" (Springer, 2000).
This package provides a Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a best-of-both-worlds optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad() implementation is provided based on Defazio et al (2020) <arxiv:2101.11075>.
Lightweight maps of mammals of the world. These maps are a comprehensive collection of maps aligned with the Mammal Diversity Database taxonomy of the American Society of Mammalogists. They are generated at low resolution for easy access, consultation and manipulation in shapefile format. The package connects to a binary backup hosted in the Digital Ocean cloud service and allows individual or batch download of any mammal species in the mdd taxonomy by providing the scientific species name.
This package provides functions for row-reducing and inverting matrices with entries in many of the finite fields (those with a prime number of elements). With this package, users will be able to find the reduced row echelon form (RREF) of a matrix and calculate the inverse of a (square, invertible) matrix.
Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. MiscMetabar is mainly built on top of the phyloseq', dada2 and targets R packages. It helps to build reproducible and robust bioinformatics pipelines in R. MiscMetabar makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.
Offers automation tools to parallelize Mplus operations when using R for data generation. It facilitates streamlined integration between Mplus and R', allowing users to run and manage multiple Mplus models simultaneously and efficiently in R'.
Deep Learning library that extends the mlr3 framework by building upon the torch package. It allows to conveniently build, train, and evaluate deep learning models without having to worry about low level details. Custom architectures can be created using the graph language defined in mlr3pipelines'.
Fast manipulation of symbolic multivariate polynomials using the Map class of the Standard Template Library. The package uses print and coercion methods from the mpoly package but offers speed improvements. It is comparable in speed to the spray package for sparse arrays, but retains the symbolic benefits of mpoly'. To cite the package in publications, use Hankin 2022 <doi:10.48550/ARXIV.2210.15991>. Uses disordR discipline.
This package provides a collection of functions to download and process weather data from the Oklahoma Mesonet <https://mesonet.org>. Functions are available for downloading station metadata, downloading Mesonet time series (MTS) files, importing MTS files into R, and converting soil temperature change measurements into soil matric potential and volumetric soil moisture.
Learning and using the Metropolis algorithm for Bayesian fitting of a generalized linear model. The package vignette includes examples of hand-coding a logistic model using several variants of the Metropolis algorithm. The package also contains R functions for simulating posterior distributions of Bayesian generalized linear model parameters using guided, adaptive, guided-adaptive and random walk Metropolis algorithms. The random walk Metropolis algorithm was originally described in Metropolis et al (1953); <doi:10.1063/1.1699114>.
Frequently one needs a convenient way to build and tune several models in one go.The goal is to provide a number of machine learning convenience functions. It provides the ability to build, tune and obtain predictions of several models in one function. The models are built using functions from caret with easier to read syntax. Kuhn(2014) <doi:10.48550/arXiv.1405.6974>.