Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Comprehensively identifying states and state-like actors is difficult. This package provides data on states and state-like entities in the international system across time. The package combines and cross-references several existing datasets consistent with the aims and functions of the manydata package. It also includes functions for identifying state references in text, and for generating fictional state names.
This package provides a data generator of multivariate non-normal data in R. It combines two different methods to generate non-normal data, one with user-specified multivariate skewness and kurtosis (more details can be found in the paper: Qu, Liu, & Zhang, 2019 <doi:10.3758/s13428-019-01291-5>), and the other with the given marginal skewness and kurtosis. The latter one is the widely-used Vale and Maurelli's method. It also contains a function to calculate univariate and multivariate (Mardia's Test) skew and kurtosis.
The purpose of this package is to share a collection of functions the author wrote during weekends for managing kitchen and garden tasks, e.g. making plant growth charts or Thanksgiving kitchen schedule charts, etc. Functions might include but not limited to: (1) aiding summarizing time related data; (2) generating axis transformation from data; and (3) aiding Markdown (with html output) and Shiny file editing.
Use standard genomics file format (BED) and a table of orthologs to illustrate synteny conservation at the genome-wide scale. Significantly conserved linkage groups are identified as described in Simakov et al. (2020) <doi:10.1038/s41559-020-1156-z> and displayed on an Oxford Grid (Edwards (1991) <doi:10.1111/j.1469-1809.1991.tb00394.x>) or a chord diagram as in Simakov et al. (2022) <doi:10.1126/sciadv.abi5884>. The package provides a function that uses a network-based greedy algorithm to find communities (Clauset et al. (2004) <doi:10.1103/PhysRevE.70.066111>) and so automatically order the chromosomes on the plot to improve interpretability.
Estimate Multidimensional Poverty Indices disaggregated by population subgroups based on the Alkire and Foster method (2011) <doi:10.1016/j.jpubeco.2010.11.006>. This includes the calculation of standard errors and confidence intervals. Other partial indices such as incidence, intensity and indicator-specific measures as well as intertemporal changes analysis can also be estimated. The standard errors and confidence intervals are calculated considering the complex survey design.
The chi-squared test for goodness of fit and independence test.
Spatio-temporal multivariate occupancy models can handle multiple species in occupancy models. This method for fitting such models is described in Hepler and Erhardt (2021) "A spatiotemporal model for multivariate occupancy data".
Deconvolution of thermal decay curves allows you to quantify proportions of biomass components in plant litter. Thermal decay curves derived from thermogravimetric analysis (TGA) are imported, modified, and then modelled in a three- or four- part mixture model using the Fraser-Suzuki function. The output is estimates for weights of pseudo-components corresponding to hemicellulose, cellulose, and lignin. For more information see: Müller-Hagedorn, M. and Bockhorn, H. (2007) <doi:10.1016/j.jaap.2006.12.008>, à rfão, J. J. M. and Figueiredo, J. L. (2001) <doi:10.1016/S0040-6031(01)00634-7>, and Yang, H. and Yan, R. and Chen, H. and Zheng, C. and Lee, D. H. and Liang, D. T. (2006) <doi:10.1021/ef0580117>.
Simultaneous multiple outcomes prediction based on revised stacking algorithms, which enables the integration of information from predictions of individual models. An implementation of methodologies proposed in our paper: Li Xing, Mary L Lesperance, Xuekui Zhang. (2019) Bioinformatics, "Simultaneous prediction of multiple outcomes using revised stacking algorithms" <doi:10.1093/bioinformatics/btz531>.
This package provides a function that wraps mcparallel() and mccollect() from parallel with temporary variables and a task handler. Wrapped in this way the results of an mcparallel() call can be returned to the R session when the fork is complete without explicitly issuing a specific mccollect() to retrieve the value. Outside of top-level tasks, multiple mcparallel() jobs can be retrieved with a single call to mcparallelDoCheck().
Calculates k-best solutions and costs for an assignment problem following the method outlined in Murty (1968) <doi:10.1287/opre.16.3.682>.
The mlrMBO package can ordinarily not be used for optimization within mlr3', because of incompatibilities of their respective class systems. mlrintermbo offers a compatibility interface that provides mlrMBO as an mlr3tuning Tuner object, for tuning of machine learning algorithms within mlr3', as well as a bbotk Optimizer object for optimization of general objective functions using the bbotk black box optimization framework. The control parameters of mlrMBO are faithfully reproduced as a paradox ParamSet'.
Use multi-state splitting to apply Adaptive-Dynamic PCA (ADPCA) to data generated from a continuous-time multivariate industrial or natural process. Employ PCA-based dimension reduction to extract linear combinations of relevant features, reducing computational burdens. For a description of ADPCA, see <doi:10.1007/s00477-016-1246-2>, the 2016 paper from Kazor et al. The multi-state application of ADPCA is from a manuscript under current revision entitled "Multi-State Multivariate Statistical Process Control" by Odom, Newhart, Cath, and Hering, and is expected to appear in Q1 of 2018.
This package provides functions to facilitate model-based clustering of nodes in a network in a mixture of experts setting, which incorporates covariate information on the nodes in the modelling process. Isobel Claire Gormley and Thomas Brendan Murphy (2010) <doi:10.1016/j.stamet.2010.01.002>.
The minorization-maximization (MM) algorithm is a powerful tool for maximizing nonconcave target function. However, for most existing MM algorithms, the surrogate function in the minorization step is constructed in a case-specific manner and requires manual programming. To address this limitation, we develop the R package MMAD, which systematically integrates the assembly--decomposition technology in the MM framework. This new package provides a comprehensive computational toolkit for one-stop inference of complex target functions, including function construction, evaluation, minorization and optimization via MM algorithm. By representing the target function through a hierarchical composition of assembly functions, we design a hierarchical algorithmic structure that supports both bottom-up operations (construction, evaluation) and top-down operation (minorization).
Process OpenPose human body keypoints for computer vision, including data structuring and user-defined linear transformations for standardization. It optionally, includes metadata extraction from filenames in the UCLA NewsScape archive.
Simulation-based sensitivity analysis for causal mediation studies. It numerically and graphically evaluates the sensitivity of causal mediation analysis results to the presence of unmeasured pretreatment confounding. The proposed method has primary advantages over existing methods. First, using an unmeasured pretreatment confounder conditional associations with the treatment, mediator, and outcome as sensitivity parameters, the method enables users to intuitively assess sensitivity in reference to prior knowledge about the strength of a potential unmeasured pretreatment confounder. Second, the method accurately reflects the influence of unmeasured pretreatment confounding on the efficiency of estimation of the causal effects. Third, the method can be implemented in different causal mediation analysis approaches, including regression-based, simulation-based, and propensity score-based methods. It is applicable to both randomized experiments and observational studies.
Multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis.
This package provides functions used for graphing in multivariate contexts. These functions are designed to support produce reasonable graphs with minimal input of graphing parameters. The motivation for these functions was to support students learning multivariate concepts and R - there may be other functions and packages better-suited to practical data analysis. For details about the ellipse methods see Johnson and Wichern (2007, ISBN:9780131877153).
This package implements two versions of the algorithm namely: stochastic and batch. The package determines also the best number of clusters and offers to the user the best clustering scheme from different results.
This package provides a new way to predict time series using the marginal distribution table in the absence of the significance of traditional models.
Multivariate Adaptive Regression Spline (MARS) based Artificial Neural Network (ANN) hybrid model is combined Machine learning hybrid approach which selects important variables using MARS and then fits ANN on the extracted important variables.
This package provides tools to generate HTML interfaces for adaptive and non-adaptive tests using the shiny package (Chalmers (2016) <doi:10.18637/jss.v071.i05>). Suitable for applying unidimensional and multidimensional computerized adaptive tests (CAT) using item response theory methodology and for creating simple questionnaires forms to collect response data directly in R. Additionally, optimal test designs (e.g., "shadow testing") are supported for tests that contain a large number of item selection constraints. Finally, package contains tools useful for performing Monte Carlo simulations for studying test item banks.
This package provides a multi action button for usage in shiny applications.