Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The NOIA model, as described extensively in Alvarez-Castro & Carlborg (2007), is a framework facilitating the estimation of genetic effects and genotype-to-phenotype maps. This package provides the basic tools to perform linear and multilinear regressions from real populations (provided the phenotype and the genotype of every individuals), estimating the genetic effects from different reference points, the genotypic values, and the decomposition of genetic variances in a multi-locus, 2 alleles system. This package is presented in Le Rouzic & Alvarez-Castro (2008).
Scrapes data from the NHL and ESPN APIs into tibble's. It primarily wraps endpoints documented by Zach Maludzinski (2023) <https://github.com/Zmalski/NHL-API-Reference>, Drew Hynes (2018) <https://gitlab.com/dword4/nhlapi/>, and Joseph Wilson (2023) <https://github.com/pseudo-r/Public-ESPN-API>, covering data from high-level multi-season summaries and award winners to low-level play-by-play logs and sports books odds.
Setup, run and analyze NetLogo (<https://ccl.northwestern.edu/netlogo/>) model simulations in R'. nlrx experiments use a similar structure as NetLogos Behavior Space experiments. However, nlrx offers more flexibility and additional tools for running and analyzing complex simulation designs and sensitivity analyses. The user defines all information that is needed in an intuitive framework, using class objects. Experiments are submitted from R to NetLogo via XML files that are dynamically written, based on specifications defined by the user. By nesting model calls in future environments, large simulation design with many runs can be executed in parallel. This also enables simulating NetLogo experiments on remote high performance computing machines. In order to use this package, Java and NetLogo (>= 5.3.1) need to be available on the executing system.
Sample sizes are often small due to hard to reach target populations, rare target events, time constraints, limited budgets, or ethical considerations. Two statistical methods with promising performance in small samples are the nonparametric bootstrap test with pooled resampling method, which is the focus of Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, and informative hypothesis testing, which is implemented in the restriktor package. The npboottprmFBar package uses the nonparametric bootstrap test with pooled resampling method to implement informative hypothesis testing. The bootFbar() function can be used to analyze data with this method and the persimon() function can be used to conduct performance simulations on type-one error and statistical power.
Validate, format and compare identification numbers used in Brazil. These numbers are used to identify individuals (CPF), vehicles (RENAVAN), companies (CNPJ) and etc. Functions to format, validate and compare these numbers have been implemented in a vectorized way in order to speed up validations and comparisons in big datasets.
Enables users to retrieve data, meta-data, and codebooks from <https://nettskjema.no/>. The data from the API is richer than from the online data portal. This package is not developed by the University of Oslo IT. Mowinckel (2021) <doi:10.5281/zenodo.4745481>.
Stochastic collapsed variational inference on mixed-membership stochastic blockmodel for networks, incorporating node-level predictors of mixed-membership vectors, as well as dyad-level predictors. For networks observed over time, the model defines a hidden Markov process that allows the effects of node-level predictors to evolve in discrete, historical periods. In addition, the package offers a variety of utilities for exploring results of estimation, including tools for conducting posterior predictive checks of goodness-of-fit and several plotting functions. The package implements methods described in Olivella, Pratt and Imai (2019) Dynamic Stochastic Blockmodel Regression for Social Networks: Application to International Conflicts', available at <https://www.santiagoolivella.info/pdfs/socnet.pdf>.
Conduct inference on the sample average treatment effect for a matched (observational) dataset with a continuous treatment. Equipped with calipered non-bipartite matching, bias-corrected sample average treatment effect estimation, and covariate-adjusted variance estimation. Matching, estimation, and inference methods are described in Frazier, Heng and Zhou (2024) <doi:10.48550/arXiv.2409.11701>.
This package provides Scilab n1qn1'. This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian. If the Hessian is near enough the truth in optimization it can speed up the optimization problem. The algorithm is described in the Scilab optimization documentation located at <https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>. This version uses manually modified code from f2c to make this a C only binary.
This package implements several nonparametric regression approaches for the inclusion of covariate information on the receiver operating characteristic (ROC) framework.
Includes functions and examples to compute NEAT, the Network Enrichment Analysis Test described in Signorelli et al. (2016, <DOI:10.1186/s12859-016-1203-6>).
An application for the empirical extrapolation of time features selecting and summarizing the most relevant patterns in time sequences.
Calculating the density, cumulative distribution, quantile, and random number of neo-normal distribution. It also interfaces with the brms package, allowing the use of the neo-normal distribution as a custom family. This integration enables the application of various brms formulas for neo-normal regression. Modified to be Stable as Normal from Burr (MSNBurr), Modified to be Stable as Normal from Burr-IIa (MSNBurr-IIa), Generalized of MSNBurr (GMSNBurr), Jones-Faddy Skew-t, Fernandez-Osiewalski-Steel Skew Exponential Power, and Jones Skew Exponential Power distributions are supported. References: Choir, A. S. (2020).Unpublished Dissertation, Iriawan, N. (2000).Unpublished Dissertation, Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., & Bastiani, F. D. (2019) <doi:10.1201/9780429298547>.
Given any graph, the node2vec algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <arXiv:1607.00653>.
This package provides functions for working with NHS number checksums. The UK's National Health Service issues NHS numbers to all users of its services and this package implements functions for verifying that the numbers are valid according to the checksum scheme the NHS use. Numbers can be validated and checksums created.
This package contains a module to define neural networks from custom components and versions of Autoencoder, BP, LVQ, MAM NN.
This package provides functions for manipulating nested data frames in a list-column using dplyr <https://dplyr.tidyverse.org/> syntax. Rather than unnesting, then manipulating a data frame, nplyr allows users to manipulate each nested data frame directly. nplyr is a wrapper for dplyr functions that provide tools for common data manipulation steps: filtering rows, selecting columns, summarising grouped data, among others.
This package provides functions complementary to packages nicheROVER and SIBER allowing the user to extract Bayesian estimates from data objects created by the packages nicheROVER and SIBER'. Please see the following publications for detailed methods on nicheROVER and SIBER Hansen et al. (2015) <doi:10.1890/14-0235.1>, Jackson et al. (2011) <doi:10.1111/j.1365-2656.2011.01806.x>, and Layman et al. (2007) <doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2>, respectfully.
Allele frequency databases for 50 forensic short tandem repeat (STR) markers, covering Norway and several broader regional populations: Europe, Africa, South America, West Asia, Middle Asia, and East Asia. Developed and maintained for use at the Department of Forensic Sciences, Oslo, Norway.
This package provides tools for working with nonlinear least squares problems. For the estimation of models reliable and robust tools than nls(), where the the Gauss-Newton method frequently stops with singular gradient messages. This is accomplished by using, where possible, analytic derivatives to compute the matrix of derivatives and a stabilization of the solution of the estimation equations. Tools for approximate or externally supplied derivative matrices are included. Bounds and masks on parameters are handled properly.
Calculate NOS (node overlap and segregation) and the associated metrics described in Strona and Veech (2015) <doi:10.1111/2041-210X.12395> and Strona et al. (2018) <doi:10.1111/ecog.03447>. The functions provided in the package enable assessment of structural patterns ranging from complete node segregation to perfect nestedness in a variety of network types. In addition, they provide a measure of network modularity.
Serves data from the United States Environmental Protection Agency (USEPA) National Eutrophication Survey <https://www.epa.gov/national-aquatic-resource-surveys>.
An implementation of the nodiv algorithm, see Borregaard, M.K., Rahbek, C., Fjeldsaa, J., Parra, J.L., Whittaker, R.J. & Graham, C.H. 2014. Node-based analysis of species distributions. Methods in Ecology and Evolution 5(11): 1225-1235. <DOI:10.1111/2041-210X.12283>. Package for phylogenetic analysis of species distributions. The main function goes through each node in the phylogeny, compares the distributions of the two descendant nodes, and compares the result to a null model. This highlights nodes where major distributional divergence have occurred. The distributional divergence for these nodes is mapped.
Nonparametric maximum likelihood estimation or Gaussian quadrature for overdispersed generalized linear models and variance component models.