Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Dimension-reduction methods aim at defining a score that maximizes signal diversity. Three approaches, tree weight, maximum entropy weights, and maximum variance weights are provided. These methods are described in He and Fong (2019) <DOI:10.1002/sim.8212>.
Nonparametric estimation and inference of a non-decreasing monotone hazard ratio from a right censored survival dataset. The estimator is based on a generalized Grenander typed estimator, and the inference procedure relies on direct plugin estimation of a first order derivative. More details please refer to the paper "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2023) <doi:10.1214/23-EJS2173>.
This package provides a guidance system for analysis with missing data. It incorporates expert, up-to-date methodology to help researchers choose the most appropriate analysis approach when some data are missing. You provide the available data and the assumed causal structure, including the likely causes of missing data. midoc will advise which analysis approaches can be used, and how best to perform them. midoc follows the framework for the treatment and reporting of missing data in observational studies (TARMOS). Lee et al (2021). <doi:10.1016/j.jclinepi.2021.01.008>.
Fits probabilistic principal components analysis, probabilistic principal components and covariates analysis and mixtures of probabilistic principal components models to metabolomic spectral data.
This package provides a declarative language for specifying multilevel models, solving for population parameters based on specified variance-explained effect size measures, generating data, and conducting power analyses to determine sample size recommendations. The specification allows for any number of within-cluster effects, between-cluster effects, covariate effects at either level, and random coefficients. Moreover, the models do not assume orthogonal effects, and predictors can correlate at either level and accommodate models with multiple interaction effects.
Datasets and functions for the book "Modélisation statistique par la pratique avec R", F. Bertrand, E. Claeys and M. Maumy-Bertrand (2019, ISBN:9782100793525, Dunod, Paris). The first chapter of the book is dedicated to an introduction to the R statistical software. The second chapter deals with correlation analysis: Pearson, Spearman and Kendall simple, multiple and partial correlation coefficients. New wrapper functions for permutation tests or bootstrap of matrices of correlation are provided with the package. The third chapter is dedicated to data exploration with factorial analyses (PCA, CA, MCA, MDA) and clustering. The fourth chapter is dedicated to regression analysis: fitting and model diagnostics are detailed. The exercises focus on covariance analysis, logistic regression, Poisson regression, two-way analysis of variance for fixed or random factors. Various example datasets are shipped with the package: for instance on pokemon, world of warcraft, house tasks or food nutrition analyses.
An API wrapper for the Monash University Probabilistic Footy Tipping Competition <https://probabilistic-footy.monash.edu/~footy/index.shtml>. Allows users to submit tips directly to the competition from R.
Imputes missing values of an incomplete data matrix by minimizing the Mahalanobis distance of each sample from the overall mean [Labita, GJ.D. and Tubo, B.F. (2024) <doi:10.24412/1932-2321-2024-278-115-123>].
This package implements modern resampling and permutation methods for robust statistical inference without restrictive parametric assumptions. Provides bias-corrected and accelerated (BCa) bootstrap (Efron and Tibshirani (1993) <doi:10.1201/9780429246593>), wild bootstrap for heteroscedastic regression (Liu (1988) <doi:10.1214/aos/1176351062>, Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>), block bootstrap for time series (Politis and Romano (1994) <doi:10.1080/01621459.1994.10476870>), and permutation-based multiple testing correction (Westfall and Young (1993) <ISBN:0-471-55761-7>). Methods handle non-normal data, heteroscedasticity, time series correlation, and multiple comparisons.
Calculate various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.
Make all elements of a character vector unique. Differs from make.unique by starting at 1 and allowing users to customise suffix format.
Bayesian multivariate age-period-cohort (MAPC) models for analyzing health data, with support for model fitting, visualization, stratification, and model comparison. Inference focuses on identifiable cross-strata differences, as described by Riebler and Held (2010) <doi:10.1093/biostatistics/kxp037>. Methods for handling complex survey data via the survey package are included, as described in Mercer et al. (2014) <doi:10.1016/j.spasta.2013.12.001>.
Analyzes non-normal data via the Multiple Comparison Procedures and Modeling approach (MCP-Mod). Many functions rely on the DoseFinding package. This package makes it so the user does not need to provide or calculate the mu vector and S matrix. Instead, the user typically supplies the data in its raw form, and this package will calculate the needed objects and passes them into the DoseFinding functions. If the user wishes to primarily use the functions provided in the DoseFinding package, a singular function (prepareGen()) will provide mu and S. The package currently handles power analysis and the MCP-Mod procedure for negative binomial, Poisson, and binomial data. The MCP-Mod procedure can also be applied to survival data, but power analysis is not available. Bretz, F., Pinheiro, J. C., and Branson, M. (2005) <doi:10.1111/j.1541-0420.2005.00344.x>. Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997) <doi:10.2307/2533961>. Pinheiro, J. C., Bornkamp, B., Glimm, E. and Bretz, F. (2014) <doi:10.1002/sim.6052>.
Play and record games of minesweeper using a graphics device that supports event handling. Replay recorded games and save GIF animations of them. Based on classic minesweeper as detailed by Crow P. (1997) <https://minesweepergame.com/math/a-mathematical-introduction-to-the-game-of-minesweeper-1997.pdf>.
High-performance MongoDB client based on mongo-c-driver and jsonlite'. Includes support for aggregation, indexing, map-reduce, streaming, encryption, enterprise authentication, and GridFS. The online user manual provides an overview of the available methods in the package: <https://jeroen.github.io/mongolite/>.
Many useful functions and extensions for dealing with meteorological data in the tidy data framework. Extends ggplot2 for better plotting of scalar and vector fields and provides commonly used analysis methods in the atmospheric sciences.
This package provides a computational method developed for model-based analysis of alternative polyadenylation (APA) using 3 end-linked reads. It accurately assigns 3 RNA-seq reads to polyA sites through statistical modeling, and generates multiple statistics for APA analysis. Please also see Li WV, Zheng D, Wang R, Tian B (2021) <doi:10.1186/s13059-021-02429-5>.
An interface to build machine learning models for classification and regression problems. mikropml implements the ML pipeline described by TopçuoÄ lu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.
Meta-CART integrates classification and regression trees (CART) into meta-analysis. Meta-CART is a flexible approach to identify interaction effects between moderators in meta-analysis. The method is described in Dusseldorp et al. (2014) <doi:10.1037/hea0000018> and Li et al. (2017) <doi:10.1111/bmsp.12088>.
Applying the methodology from Manuel et al. to estimate parameters using a matched case control data with a mismeasured exposure variable that is accompanied by instrumental variables (Submitted).
This package provides the mean to parse and render markdown text with grid along with facilities to define the styling of the text.
This package implements an interface to the legacy Fortran code from O'Connell and Dobson (1984) <DOI:10.2307/2531148>. Implements Fortran 77 code for the methods developed by Schouten (1982) <DOI:10.1111/j.1467-9574.1982.tb00774.x>. Includes estimates of average agreement for each observer and average agreement for each subject.
Collection of functions to perform fixed and random-effects multivariate and univariate meta-analysis and meta-regression.
Gene Expression datasets for the MM2S package. Contains normalized expression data for Human Medulloblastoma ('GSE37418') as well as Mouse Medulloblastoma models ('GSE36594'). Deena Gendoo et al. (2015) <doi:10.1016/j.ygeno.2015.05.002>.