Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for the calculation of effect sizes (standardised mean difference) and mean difference in pre-post controlled studies, including robust imputation of missing variances (standard deviation of changes) and correlations (Pearson correlation coefficient). The main function metacor_dual() implements several methods for imputing missing standard deviation of changes or Pearson correlation coefficient, and generates transparent imputation reports. Designed for meta-analyses with incomplete summary statistics. For details on the methods, see Higgins et al. (2023) and Fu et al. (2013).
Estimation, inference and forecasting using the Bayesian approach for multivariate threshold autoregressive (TAR) models in which the distribution used to describe the noise process belongs to the class of Gaussian variance mixtures.
This package provides a PC Algorithm with the Principle of Mendelian Randomization. This package implements the MRPC (PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also contains functions to simulate data under a certain topology, to visualize a graph in different ways, and to compare graphs and quantify the differences. See Badsha and Fu (2019) <doi:10.3389/fgene.2019.00460>, Badsha, Martin and Fu (2021) <doi:10.3389/fgene.2021.651812>, Kvamme and Badsha, et al. (2025) <doi:10.1093/genetics/iyaf064>.
This package provides R6 objects to perform parallelized hyperparameter optimization and cross-validation. Hyperparameter optimization can be performed with Bayesian optimization (via rBayesianOptimization <https://cran.r-project.org/package=rBayesianOptimization>) and grid search. The optimized hyperparameters can be validated using k-fold cross-validation. Alternatively, hyperparameter optimization and validation can be performed with nested cross-validation. While mlexperiments focuses on core wrappers for machine learning experiments, additional learner algorithms can be supplemented by inheriting from the provided learner base class.
Inspired by pattern matching and enum types in Rust and many functional programming languages, this package offers an updated version of the switch function called Match that accepts atomic values, functions, expressions, and enum variants. Conditions and return expressions are separated by -> and multiple conditions can be associated with the same return expression using |'. Match also includes support for fallthrough'. The package also replicates the Result and Option enums from Rust.
Generalized Egger tests for detecting publication bias in meta-analysis for diagnostic accuracy test (Noma (2020) <doi:10.1111/biom.13343>, Noma (2022) <doi:10.48550/arXiv.2209.07270>). These publication bias tests are generally more powerful compared with the conventional univariate publication bias tests and can incorporate correlation information between the outcome variables.
We develop Multi-source Graph Synthesis (MUGS), an algorithm designed to create embeddings for pediatric Electronic Health Record (EHR) codes by leveraging graphical information from three distinct sources: (1) pediatric EHR data, (2) EHR data from the general patient population, and (3) existing hierarchical medical ontology knowledge shared across different patient populations. See Li et al. (2024) <doi:10.1038/s41746-024-01320-4> for details.
Optimization algorithms implemented in R, including conjugate gradient (CG), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited memory BFGS (L-BFGS) methods. Most internal parameters can be set through the call interface. The solvers hold up quite well for higher-dimensional problems.
This package performs multiple empirical likelihood tests. It offers an easy-to-use interface and flexibility in specifying hypotheses and calibration methods, extending the framework to simultaneous inferences. The core computational routines are implemented using the Eigen C++ library and RcppEigen interface, with OpenMP for parallel computation. Details of the testing procedures are provided in Kim, MacEachern, and Peruggia (2023) <doi:10.1080/10485252.2023.2206919>. A companion paper by Kim, MacEachern, and Peruggia (2024) <doi:10.18637/jss.v108.i05> is available for further information. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
Multiplicative AR(1) with Seasonal is a stochastic process model built on top of AR(1). The package provides the following procedures for MAR(1)S processes: fit, compose, decompose, advanced simulate and predict.
Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes. Directional and other multivariate histograms are provided.
You can apply image processing effects that modifies the perceived material properties of objects in photos, such as gloss, smoothness, and blemishes. This is an implementation of the algorithm proposed by Boyadzhiev et al. (2015) "Band-Sifting Decomposition for Image Based Material Editing". Documentation and practical tips of the package is available at <https://github.com/tsuda16k/materialmodifier>.
This package provides a compilation of functions to create visually appealing and information-rich plots of meta-analytic data using ggplot2'. Currently allows to create forest plots, funnel plots, and many of their variants, such as rainforest plots, thick forest plots, additional evidence contour funnel plots, and sunset funnel plots. In addition, functionalities for visual inference with the funnel plot in the context of meta-analysis are provided.
Create and integrate thematic maps in your workflow. This package helps to design various cartographic representations such as proportional symbols, choropleth or typology maps. It also offers several functions to display layout elements that improve the graphic presentation of maps (e.g. scale bar, north arrow, title, labels). mapsf maps sf objects on base graphics.
This package provides functions for analyzing the association between one single response categorical variable (SRCV) and one multiple response categorical variable (MRCV), or between two or three MRCVs. A modified Pearson chi-square statistic can be used to test for marginal independence for the one or two MRCV case, or a more general loglinear modeling approach can be used to examine various other structures of association for the two or three MRCV case. Bootstrap- and asymptotic-based standardized residuals and model-predicted odds ratios are available, in addition to other descriptive information. Statisical methods implemented are described in Bilder et al. (2000) <doi:10.1080/03610910008813665>, Bilder and Loughin (2004) <doi:10.1111/j.0006-341X.2004.00147.x>, Bilder and Loughin (2007) <doi:10.1080/03610920600974419>, and Koziol and Bilder (2014) <https://journal.r-project.org/articles/RJ-2014-014/>.
The stepwise regression with assumptions checking and the possible Box-Cox transformation.
Fitting multivariate covariance generalized linear models (McGLMs) to data. McGLM is a general framework for non-normal multivariate data analysis, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. The models take non-normality into account in the conventional way by means of a variance function, and the mean structure is modelled by means of a link function and a linear predictor. The models are fitted using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of different types of response variables and covariance structures, including multivariate extensions of repeated measures, time series, longitudinal, spatial and spatio-temporal structures. The package offers a user-friendly interface for fitting McGLMs similar to the glm() R function. See Bonat (2018) <doi:10.18637/jss.v084.i04>, for more information and examples.
Hierarchical workspace tree, code editing and backup, easy package prep, editing of packages while loaded, per-object lazy-loading, easy documentation, macro functions, and miscellaneous utilities. Needed by debug package.
This package provides methods for quality control and robust pre-processing and analysis of MALDI mass spectrometry data (Palarea-Albaladejo et al. (2018) <doi:10.1093/bioinformatics/btx628>).
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMjF() jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
This package contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software JAGS (which should be installed locally and which is loaded in missingHE via the R package R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, missingHE provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.
Consistent user interface to the most common regression and classification algorithms, such as random forest, neural networks, C5 trees and support vector machines, complemented with a handful of auxiliary functions, such as variable importance and a tuning function for the parameters.
This package provides a Comprehensive tool for almost all existing multiple testing methods for multiple families. The package summarizes the existing methods for multiple families multiple testing procedures (MTPs) such as double FDR, group Benjamini-Hochberg (GBH) procedure and average FDR controlling procedure. The package also provides some novel multiple testing procedures using selective inference idea.
Various utilities to manipulate multivariate polynomials. The package is almost completely superceded by the spray and mvp packages, which are much more efficient.