_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bentcablear 0.3.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bentcableAR
Licenses: GPL 3+
Synopsis: Bent-Cable Regression for Independent Data or Autoregressive Time Series
Description:

Included are two main interfaces, bentcable.ar() and bentcable.dev.plot(), for fitting and diagnosing bent-cable regressions for autoregressive time-series data (Chiu and Lockhart 2010, <doi:10.1002/cjs.10070>) or independent data (time series or otherwise - Chiu, Lockhart and Routledge 2006, <doi:10.1198/016214505000001177>). Some components in the package can also be used as stand-alone functions. The bent cable (linear-quadratic-linear) generalizes the broken stick (linear-linear), which is also handled by this package. Version 0.2 corrected a glitch in the computation of confidence intervals for the CTP. References that were updated from Versions 0.2.1 and 0.2.2 appear in Version 0.2.3 and up. Version 0.3.0 improved robustness of the error-message producing mechanism. Version 0.3.1 improves the NAMESPACE file of the package. It is the author's intention to distribute any future updates via GitHub.

r-countfitter 1.5
Propagated dependencies: r-shiny@1.10.0 r-pscl@1.5.9 r-mass@7.3-65 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/BioGenies/countfitteR
Licenses: GPL 3
Synopsis: Comprehensive Automatized Evaluation of Distribution Models for Count Data
Description:

This package provides a large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.

r-cgmquantify 0.1.0
Propagated dependencies: r-tidyverse@2.0.0 r-magrittr@2.0.3 r-hms@1.1.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cgmquantify
Licenses: FSDG-compatible
Synopsis: Analyzing Glucose and Glucose Variability
Description:

Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.

r-dinamic-duo 1.0.3
Dependencies: python@3.11.11
Propagated dependencies: r-plyr@1.8.9 r-dinamic@1.0.1 r-curl@6.2.3 r-biomart@2.64.0
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DiNAMIC.Duo
Licenses: GPL 3
Synopsis: Finding Recurrent DNA Copy Number Alterations and Differences
Description:

In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. Here we use cyclic shift permutations to identify recurrent copy number alterations in a single cohort or recurrent copy number differences in two cohorts based on a common set of genomic markers. Additional functionality is provided to perform downstream analyses, including the creation of summary files and graphics. DiNAMIC.Duo builds upon the original DiNAMIC package of Walter et al. (2011) <doi:10.1093/bioinformatics/btq717> and leverages the theory developed in Walter et al. (2015) <doi:10.1093/biomet/asv046>. An article describing DiNAMIC.Duo by Walter et al. (2022) can be found at <doi: 10.1093/bioinformatics/btac542>.

r-lineartestr 1.0.0
Propagated dependencies: r-viridis@0.6.5 r-tidyr@1.3.1 r-sandwich@3.1-1 r-readr@2.1.5 r-matrix@1.7-3 r-ggplot2@3.5.2 r-forecast@8.24.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/FedericoGarza/lineartestr
Licenses: GPL 2+
Synopsis: Linear Specification Testing
Description:

Tests whether the linear hypothesis of a model is correct specified using Dominguez-Lobato test. Also Ramsey's RESET (Regression Equation Specification Error Test) test is implemented and Wald tests can be carried out. Although RESET test is widely used to test the linear hypothesis of a model, Dominguez and Lobato (2019) proposed a novel approach that generalizes well known specification tests such as Ramsey's. This test relies on wild-bootstrap; this package implements this approach to be usable with any function that fits linear models and is compatible with the update() function such as stats'::lm(), lfe'::felm() and forecast'::Arima(), for ARMA (autoregressiveâ moving-average) models. Also the package can handle custom statistics such as Cramer von Mises and Kolmogorov Smirnov, described by the authors, and custom distributions such as Mammen (discrete and continuous) and Rademacher. Manuel A. Dominguez & Ignacio N. Lobato (2019) <doi:10.1080/07474938.2019.1687116>.

r-binequality 1.0.4
Propagated dependencies: r-survival@3.8-3 r-ineq@0.2-13 r-gamlss-dist@6.1-1 r-gamlss-cens@5.0-7 r-gamlss@5.4-22
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=binequality
Licenses: GPL 3+
Synopsis: Methods for Analyzing Binned Income Data
Description:

This package provides methods for model selection, model averaging, and calculating metrics, such as the Gini, Theil, Mean Log Deviation, etc, on binned income data where the topmost bin is right-censored. We provide both a non-parametric method, termed the bounded midpoint estimator (BME), which assigns cases to their bin midpoints; except for the censored bins, where cases are assigned to an income estimated by fitting a Pareto distribution. Because the usual Pareto estimate can be inaccurate or undefined, especially in small samples, we implement a bounded Pareto estimate that yields much better results. We also provide a parametric approach, which fits distributions from the generalized beta (GB) family. Because some GB distributions can have poor fit or undefined estimates, we fit 10 GB-family distributions and use multimodel inference to obtain definite estimates from the best-fitting distributions. We also provide binned income data from all United States of America school districts, counties, and states.

r-pooledpeaks 1.2.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.6 r-qpdf@1.3.5 r-pdftools@3.5.0 r-magrittr@2.0.3 r-fragman@1.0.9 r-dplyr@1.1.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/kmkuesters/pooledpeaks
Licenses: GPL 3+
Synopsis: Genetic Analysis of Pooled Samples
Description:

Analyzing genetic data obtained from pooled samples. This package can read in Fragment Analysis output files, process the data, and score peaks, as well as facilitate various analyses, including cluster analysis, calculation of genetic distances and diversity indices, as well as bootstrap resampling for statistical inference. Specifically tailored to handle genetic data efficiently, researchers can explore population structure, genetic differentiation, and genetic relatedness among samples. We updated some functions from Covarrubias-Pazaran et al. (2016) <doi:10.1186/s12863-016-0365-6> to allow for the use of new file formats and referenced the following to write our genetic analysis functions: Long et al. (2022) <doi:10.1038/s41598-022-04776-0>, Jost (2008) <doi:10.1111/j.1365-294x.2008.03887.x>, Nei (1973) <doi:10.1073/pnas.70.12.3321>, Foulley et al. (2006) <doi:10.1016/j.livprodsci.2005.10.021>, Chao et al. (2008) <doi:10.1111/j.1541-0420.2008.01010.x>.

r-survrm2perm 0.1.0
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=survRM2perm
Licenses: GPL 2
Synopsis: Permutation Test for Comparing Restricted Mean Survival Time
Description:

This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.

r-datastreamr 2.0.4
Propagated dependencies: r-stringr@1.5.1 r-logger@0.4.0 r-jsonlite@2.0.0 r-ini@0.3.1 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DatastreamR
Licenses: GPL 3+
Synopsis: Datastream API
Description:

Access Datastream content through <https://product.datastream.com/dswsclient/Docs/Default.aspx>., our historical financial database with over 35 million individual instruments or indicators across all major asset classes, including over 19 million active economic indicators. It features 120 years of data, across 175 countries â the information you need to interpret market trends, economic cycles, and the impact of world events. Data spans bond indices, bonds, commodities, convertibles, credit default swaps, derivatives, economics, energy, equities, equity indices, ESG, estimates, exchange rates, fixed income, funds, fundamentals, interest rates, and investment trusts. Unique content includes I/B/E/S Estimates, Worldscope Fundamentals, point-in-time data, and Reuters Polls. Alongside the content, sit a set of powerful analytical tools for exploring relationships between different asset types, with a library of customizable analytical functions. In-house timeseries can also be uploaded using the package to comingle with Datastream maintained datasets, use with these analytical tools and displayed in Datastreamâ s flexible charting facilities in Microsoft Office.

r-ipadmixture 0.1.2
Propagated dependencies: r-treemap@2.4-4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/DarkEyes/ipADMIXTURE
Licenses: GPL 3
Synopsis: Iterative Pruning Population Admixture Inference Framework
Description:

This package provides a data clustering package based on admixture ratios (Q matrix) of population structure. The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K* that makes majority of members of two clusters are in the different clusters. This K* reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K* clusters based on maximum admixture ratio of individuals. The publication of this package is at Chainarong Amornbunchornvej, Pongsakorn Wangkumhang, and Sissades Tongsima (2020) <doi:10.1101/2020.03.21.001206>.

r-spoccupancy 0.8.0
Propagated dependencies: r-spabundance@0.2.1 r-rann@2.6.2 r-lme4@1.1-37 r-foreach@1.5.2 r-doparallel@1.0.17 r-coda@0.19-4.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.doserlab.com/files/spoccupancy-web
Licenses: GPL 3+
Synopsis: Single-Species, Multi-Species, and Integrated Spatial Occupancy Models
Description:

Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation detailed in Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Spatial models are fit using either Gaussian processes or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Provides functionality for data integration of multiple single-species occupancy data sets using a joint likelihood framework. Details on data integration are given in Miller, Pacifici, Sanderlin, and Reich (2019) <doi:10.1111/2041-210X.13110>. Details on single-species and multi-species models are found in MacKenzie, Nichols, Lachman, Droege, Royle, and Langtimm (2002) <doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2> and Dorazio and Royle <doi:10.1198/016214505000000015>, respectively.

r-magmaclustr 1.2.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.6 r-rcpp@1.0.14 r-purrr@1.0.4 r-plyr@1.8.9 r-mvtnorm@1.3-3 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ArthurLeroy/MagmaClustR
Licenses: Expat
Synopsis: Clustering and Prediction using Multi-Task Gaussian Processes with Common Mean
Description:

An implementation for the multi-task Gaussian processes with common mean framework. Two main algorithms, called Magma and MagmaClust', are available to perform predictions for supervised learning problems, in particular for time series or any functional/continuous data applications. The corresponding articles has been respectively proposed by Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2022) <doi:10.1007/s10994-022-06172-1>, and Arthur Leroy, Pierre Latouche, Benjamin Guedj and Servane Gey (2023) <https://jmlr.org/papers/v24/20-1321.html>. Theses approaches leverage the learning of cluster-specific mean processes, which are common across similar tasks, to provide enhanced prediction performances (even far from data) at a linear computational cost (in the number of tasks). MagmaClust is a generalisation of Magma where the tasks are simultaneously clustered into groups, each being associated to a specific mean process. User-oriented functions in the package are decomposed into training, prediction and plotting functions. Some basic features (classic kernels, training, prediction) of standard Gaussian processes are also implemented.

r-onewaytests 3.1
Propagated dependencies: r-wesanderson@0.3.7 r-nortest@1.0-4 r-moments@0.14.1 r-ggplot2@3.5.2 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=onewaytests
Licenses: GPL 2+
Synopsis: One-Way Tests in Independent Groups Designs
Description:

This package performs one-way tests in independent groups designs including homoscedastic and heteroscedastic tests. These are one-way analysis of variance (ANOVA), Welch's heteroscedastic F test, Welch's heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test, Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests, Alvandi's F test, Alvandi's generalized p-value, approximate F test, B square test, Cochran test, Weerahandi's generalized F test, modified Brown-Forsythe test, adjusted Welch's heteroscedastic F test, Welch-Aspin test, Permutation F test. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student's t test, Welch's t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).

r-evchargcost 0.1.0
Propagated dependencies: r-ggplot2@3.5.2 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EVchargcost
Licenses: GPL 3
Synopsis: Computes and Plot the Optimal Charging Strategy for Electric Vehicles
Description:

The purpose of this library is to compute the optimal charging cost function for a electric vehicle (EV). It is well known that the charging function of a EV is a concave function that can be approximated by a piece-wise linear function, so bigger the state of charge, slower the charging process is. Moreover, the other important function is the one that gives the electricity price. This function is usually step-wise, since depending on the time of the day, the price of the electricity is different. Then, the problem of charging an EV to a certain state of charge is not trivial. This library implements an algorithm to compute the optimal charging cost function, that is, it plots for a given state of charge r (between 0 and 1) the minimum cost we need to pay in order to charge the EV to that state of charge r. The details of the algorithm are described in González-Rodrà guez et at (2023) <https://inria.hal.science/hal-04362876v1>.

r-quantetrack 0.1.0
Propagated dependencies: r-trajr@1.5.1 r-stringr@1.5.1 r-splancs@2.01-45 r-similaritymeasures@1.4 r-shotgroups@0.8.4 r-schoolmath@0.4.2 r-nistunits@1.0.1 r-mclust@6.1.1 r-magrittr@2.0.3 r-gridextra@2.3 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-geomorph@4.0.10 r-emmeans@1.11.1 r-dunn-test@1.3.6 r-dtw@1.23-1 r-dplyr@1.1.4 r-car@3.1-3 r-berryfunctions@1.22.13
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://github.com/MacroFunUV/QuAnTeTrack
Licenses: CC0
Synopsis: Quantitative Analysis of Tetrapod Trackways
Description:

This package provides a quantitative and automated tool to extract (palaeo)biological information (i.e., measurements, velocities, similarity metrics, etc.) from the analysis of tetrapod trackways. Methods implemented in the package draw from several sources, including Alexander (1976) <doi:10.1038/261129a0>, Batschelet (1981, ISBN:9780120810505), Benhamou (2004) <doi:10.1016/j.jtbi.2004.03.016>, Bovet and Benhamou (1988) <doi:10.1016/S0022-5193(88)80038-9>, Cheung et al. (2007) <doi:10.1007/s00422-007-0158-0>, Cheung et al. (2008) <doi:10.1007/s00422-008-0251-z>, Cleasby et al. (2019) <doi:10.1007/s00265-019-2761-1>, Farlow et al. (1981) <doi:10.1038/294747a0>, Ostrom (1972) <doi:10.1016/0031-0182(72)90049-1>, Rohlf (2008) <https://sbmorphometrics.org/>, Rohlf (2009) <https://sbmorphometrics.org/>, Ruiz and Torices (2013) <doi:10.1080/10420940.2012.759115>, Scrucca et al. (2016) <doi:10.32614/RJ-2016-021>, Thulborn and Wade (1984) <https://www.museum.qld.gov.au/collections-and-research/memoirs/nature-21/mqm-n21-2-11-thulborn-wade>.

r-tsensembler 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-xgboost@1.7.11.1 r-softimpute@1.4-3 r-rcpproll@0.3.1 r-ranger@0.17.0 r-pls@2.8-5 r-monmlp@1.1.5-1 r-kernlab@0.9-33 r-glmnet@4.1-8 r-gbm@2.2.2 r-foreach@1.5.2 r-earth@5.3.4 r-doparallel@1.0.17 r-cubist@0.5.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/vcerqueira/tsensembler
Licenses: GPL 2+
Synopsis: Dynamic Ensembles for Time Series Forecasting
Description:

This package provides a framework for dynamically combining forecasting models for time series forecasting predictive tasks. It leverages machine learning models from other packages to automatically combine expert advice using metalearning and other state-of-the-art forecasting combination approaches. The predictive methods receive a data matrix as input, representing an embedded time series, and return a predictive ensemble model. The ensemble use generic functions predict() and forecast() to forecast future values of the time series. Moreover, an ensemble can be updated using methods, such as update_weights() or update_base_models()'. A complete description of the methods can be found in: Cerqueira, V., Torgo, L., Pinto, F., and Soares, C. "Arbitrated Ensemble for Time Series Forecasting." to appear at: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017; and Cerqueira, V., Torgo, L., and Soares, C.: "Arbitrated Ensemble for Solar Radiation Forecasting." International Work-Conference on Artificial Neural Networks. Springer, 2017 <doi:10.1007/978-3-319-59153-7_62>.

r-matrixextra 0.1.15
Propagated dependencies: r-float@0.3-3 r-matrix@1.7-3 r-rcpp@1.0.14 r-rhpcblasctl@0.23-42
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/david-cortes/MatrixExtra
Licenses: GPL 2+
Synopsis: Extra methods for sparse matrices
Description:

This package extends sparse matrix and vector classes from the Matrix package by providing:

  1. Methods and operators that work natively on CSR formats (compressed sparse row, a.k.a. RsparseMatrix) such as slicing/sub-setting, assignment, rbind(), mathematical operators for CSR and COO such as addition or sqrt(), and methods such as diag();

  2. Multi-threaded matrix multiplication and cross-product for many <sparse, dense> types, including the float32 type from float;

  3. Coercion methods between pairs of classes which are not present in Matrix, such as from dgCMatrix to ngRMatrix, as well as convenience conversion functions;

  4. Utility functions for sparse matrices such as sorting the indices or removing zero-valued entries;

  5. Fast transposes that work by outputting in the opposite storage format;

  6. Faster replacements for many Matrix methods for all sparse types, such as slicing and elementwise multiplication.

  7. Convenience functions for sparse objects, such as mapSparse or a shorter show method.

r-diffxtables 0.1.3
Propagated dependencies: r-rdpack@2.6.4 r-pander@0.6.6
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DiffXTables
Licenses: LGPL 3+
Synopsis: Pattern Analysis Across Contingency Tables
Description:

Statistical hypothesis testing of pattern heterogeneity via differences in underlying distributions across multiple contingency tables. Five tests are included: the comparative chi-squared test (Song et al. 2014) <doi:10.1093/nar/gku086> (Zhang et al. 2015) <doi:10.1093/nar/gkv358>, the Sharma-Song test (Sharma et al. 2021) <doi:10.1093/bioinformatics/btab240>, the heterogeneity test, the marginal-change test (Sharma et al. 2020) <doi:10.1145/3388440.3412485>, and the strength test (Sharma et al. 2020) <doi:10.1145/3388440.3412485>. Under the null hypothesis that row and column variables are statistically independent and joint distributions are equal, their test statistics all follow an asymptotically chi-squared distribution. A comprehensive type analysis categorizes the relation among the contingency tables into type null, 0, 1, and 2 (Sharma et al. 2020) <doi:10.1145/3388440.3412485>. They can identify heterogeneous patterns that differ in either the first order (marginal) or the second order (differential departure from independence). Second-order differences reveal more fundamental changes than first-order differences across heterogeneous patterns.

r-nbpmatching 1.5.6
Propagated dependencies: r-mass@7.3-65 r-hmisc@5.2-3
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/couthcommander/nbpMatching
Licenses: GPL 2+
Synopsis: Functions for Optimal Non-Bipartite Matching
Description:

Perform non-bipartite matching and matched randomization. A "bipartite" matching utilizes two separate groups, e.g. smokers being matched to nonsmokers or cases being matched to controls. A "non-bipartite" matching creates mates from one big group, e.g. 100 hospitals being randomized for a two-arm cluster randomized trial or 5000 children who have been exposed to various levels of secondhand smoke and are being paired to form a greater exposure vs. lesser exposure comparison. At the core of a non-bipartite matching is a N x N distance matrix for N potential mates. The distance between two units expresses a measure of similarity or quality as mates (the lower the better). The gendistance() and distancematrix() functions assist in creating this. The nonbimatch() function creates the matching that minimizes the total sum of distances between mates; hence, it is referred to as an "optimal" matching. The assign.grp() function aids in performing a matched randomization. Note bipartite matching can be performed using the prevent option in gendistance()'.

r-exactamente 0.1.1
Propagated dependencies: r-shinythemes@1.2.0 r-shiny@1.10.0 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/mightymetrika/exactamente
Licenses: Expat
Synopsis: Explore the Exact Bootstrap Method
Description:

Researchers often use the bootstrap to understand a sample drawn from a population with unknown distribution. The exact bootstrap method is a practical tool for exploring the distribution of small sample size data. For a sample of size n, the exact bootstrap method generates the entire space of n to the power of n resamples and calculates all realizations of the selected statistic. The exactamente package includes functions for implementing two bootstrap methods, the exact bootstrap and the regular bootstrap. The exact_bootstrap() function applies the exact bootstrap method following methodologies outlined in Kisielinska (2013) <doi:10.1007/s00180-012-0350-0>. The regular_bootstrap() function offers a more traditional bootstrap approach, where users can determine the number of resamples. The e_vs_r() function allows users to directly compare results from these bootstrap methods. To augment user experience, exactamente includes the function exactamente_app() which launches an interactive shiny web application. This application facilitates exploration and comparison of the bootstrap methods, providing options for modifying various parameters and visualizing results.

r-predictabel 1.2-4
Propagated dependencies: r-rocr@1.0-11 r-pbsmodelling@2.69.3 r-lazyeval@0.2.2 r-hmisc@5.2-3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PredictABEL
Licenses: GPL 2+
Synopsis: Assessment of Risk Prediction Models
Description:

We included functions to assess the performance of risk models. The package contains functions for the various measures that are used in empirical studies, including univariate and multivariate odds ratios (OR) of the predictors, the c-statistic (or area under the receiver operating characteristic (ROC) curve (AUC)), Hosmer-Lemeshow goodness of fit test, reclassification table, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Also included are functions to create plots, such as risk distributions, ROC curves, calibration plot, discrimination box plot and predictiveness curves. In addition to functions to assess the performance of risk models, the package includes functions to obtain weighted and unweighted risk scores as well as predicted risks using logistic regression analysis. These logistic regression functions are specifically written for models that include genetic variables, but they can also be applied to models that are based on non-genetic risk factors only. Finally, the package includes function to construct a simulated dataset with genotypes, genetic risks, and disease status for a hypothetical population, which is used for the evaluation of genetic risk models.

r-psharmonize 0.3.5
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-rmarkdown@2.29 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-purrr@1.0.4 r-magrittr@2.0.3 r-glue@1.8.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/NUDACC/psHarmonize
Licenses: Expat
Synopsis: Creates a Harmonized Dataset Based on a Set of Instructions
Description:

This package provides functions which facilitate harmonization of data from multiple different datasets. Data harmonization involves taking data sources with differing values, creating coding instructions to create a harmonized set of values, then making those data modifications. psHarmonize will assist with data modification once the harmonization instructions are written. Coding instructions are written by the user to create a "harmonization sheet". This sheet catalogs variable names, domains (e.g. clinical, behavioral, outcomes), provides R code instructions for mapping or conversion of data, specifies the variable name in the harmonized data set, and tracks notes. The package will then harmonize the source datasets according to the harmonization sheet to create a harmonized dataset. Once harmonization is finished, the package also has functions that will create descriptive statistics using RMarkdown'. Data Harmonization guidelines have been described by Fortier I, Raina P, Van den Heuvel ER, et al. (2017) <doi:10.1093/ije/dyw075>. Additional details of our R package have been described by Stephen JJ, Carolan P, Krefman AE, et al. (2024) <doi:10.1016/j.patter.2024.101003>.

r-methevolsim 0.2.1
Propagated dependencies: r-r6@2.6.1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MethEvolSIM
Licenses: GPL 3+
Synopsis: Simulate DNA Methylation Dynamics on Different Genomic Structures along Genealogies
Description:

DNA methylation is an epigenetic modification involved in genomic stability, gene regulation, development and disease. DNA methylation occurs mainly through the addition of a methyl group to cytosines, for example to cytosines in a CpG dinucleotide context (CpG stands for a cytosine followed by a guanine). Tissue-specific methylation patterns lead to genomic regions with different characteristic methylation levels. E.g. in vertebrates CpG islands (regions with high CpG content) that are associated to promoter regions of expressed genes tend to be unmethylated. MethEvolSIM is a model-based simulation software for the generation and modification of cytosine methylation patterns along a given tree, which can be a genealogy of cells within an organism, a coalescent tree of DNA sequences sampled from a population, or a species tree. The simulations are based on an extension of the model of Grosser & Metzler (2020) <doi:10.1186/s12859-020-3438-5> and allows for changes of the methylation states at single cytosine positions as well as simultaneous changes of methylation frequencies in genomic structures like CpG islands.

r-mscquartets 3.2
Propagated dependencies: r-zipfr@0.6-70 r-rdpack@2.6.4 r-rcppprogress@0.4.2 r-rcpp@1.0.14 r-phangorn@2.12.1 r-igraph@2.1.4 r-foreach@1.5.2 r-doparallel@1.0.17 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MSCquartets
Licenses: Expat
Synopsis: Analyzing Gene Tree Quartets under the Multi-Species Coalescent
Description:

This package provides methods for analyzing and using quartets displayed on a collection of gene trees, primarily to make inferences about the species tree or network under the multi-species coalescent model. These include quartet hypothesis tests for the model, as developed by Mitchell et al. (2019) <doi:10.1214/19-EJS1576>, simplex plots of quartet concordance factors as presented by Allman et al. (2020) <doi:10.1101/2020.02.13.948083>, species tree inference methods based on quartet distances of Rhodes (2019) <doi:10.1109/TCBB.2019.2917204> and Yourdkhani and Rhodes (2019) <doi:10.1007/s11538-020-00773-4>, the NANUQ algorithm for inference of level-1 species networks of Allman et al. (2019) <doi:10.1186/s13015-019-0159-2>, the TINNIK algorithm for inference of the tree of blobs of an arbitrary network of Allman et al.(2022) <doi:10.1007/s00285-022-01838-9>, and NANUQ+ routines for resolving multifurcations in the tree of blobs to cycles as in Allman et al.(2024) (forthcoming). Software announcement by Rhodes et al. (2020) <doi:10.1093/bioinformatics/btaa868>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014