Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides flexible dictionary-based cleaning that allows users to specify implicit and explicit missing data, regular expressions for both data and columns, and global matches, while respecting ordering of factors. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
Visualize confounder control in meta-analysis. metaconfoundr is an approach to evaluating bias in studies used in meta-analyses based on the causal inference framework. Study groups create a causal diagram displaying their assumptions about the scientific question. From this, they develop a list of important confounders'. Then, they evaluate whether studies controlled for these variables well. metaconfoundr is a toolkit to facilitate this process and visualize the results as heat maps, traffic light plots, and more.
This package provides functions to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data.Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.
To perform main effect matrix factor model (MEFM) estimation for a given matrix time series as described in Lam and Cen (2024) <doi:10.48550/arXiv.2406.00128>. Estimation of traditional matrix factor models is also supported. Supplementary functions for testing MEFM over factor models are included.
Modelling interacting microbial populations - example applications include human gut microbiota, rumen microbiota and phytoplankton. Solves a system of ordinary differential equations to simulate microbial growth and resource uptake over time. This version contains network visualisation functions.
This package provides real & simulated datasets containing time-series traffic observations and additional information pertaining to Loop 1 "Mopac" located in Austin, Texas.
Fits mixed Poisson regression models (Poisson-Inverse Gaussian or Negative-Binomial) on data sets with response variables being count data. The models can have varying precision parameter, where a linear regression structure (through a link function) is assumed to hold on the precision parameter. The Expectation-Maximization algorithm for both these models (Poisson Inverse Gaussian and Negative Binomial) is an important contribution of this package. Another important feature of this package is the set of functions to perform global and local influence analysis. See Barreto-Souza and Simas (2016) <doi:10.1007/s11222-015-9601-6> for further details.
This package performs maximum a posteriori Bayesian estimation of individual pharmacokinetic parameters from a model defined in mrgsolve', typically for model-based therapeutic drug monitoring. Internally computes an objective function value from model and data, performs optimization and returns predictions in a convenient format. The performance of the package was described by Le Louedec et al (2021) <doi:10.1002/psp4.12689>.
This package provides estimation and leave-one-cluster-out jackknife standard errors for four longitudinal cluster-randomized trial estimands: horizontal individual average treatment effect (h-iATE), horizontal cluster average treatment effect (h-cATE), vertical individual average treatment effect (v-iATE), and vertical cluster-period average treatment effect (v-cATE), using unadjusted and augmented (model-robust standardization) estimators. The working model may be fit using linear mixed models for continuous outcomes or generalized estimating equations and generalized linear mixed models for binary outcomes. Period inclusion for aggregation is determined automatically: only periods with both treated and control clusters are included in the construction of the marginal means and treatment effect contrasts. See Fang et al. (2025) <doi:10.48550/arXiv.2507.17190>.
The sample mean and standard deviation are two commonly used statistics in meta-analyses, but some trials use other summary statistics such as the median and quartiles to report the results. Therefore, researchers need to transform those information back to the sample mean and standard deviation. This package implemented sample mean estimators by Luo et al. (2016) <arXiv:1505.05687>, sample standard deviation estimators by Wan et al. (2014) <arXiv:1407.8038>, and the best linear unbiased estimators (BLUEs) of location and scale parameters by Yang et al. (2018, submitted) based on sample quantiles derived summaries in a meta-analysis.
This package provides data about morphemes, the smallest units of meaning in a language.
Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes. Directional and other multivariate histograms are provided.
Data sets from a variety of biological sample matrices, analysed using a number of mass spectrometry based metabolomic analytical techniques. The example data sets are stored remotely using GitHub releases <https://github.com/aberHRML/metaboData/releases> which can be accessed from R using the package. The package also includes the abr1 FIE-MS data set from the FIEmspro package <https://users.aber.ac.uk/jhd/> <doi:10.1038/nprot.2007.511>.
Exploratory and predictive methods for the analysis of several blocks of variables measured on the same individuals.
Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format.
Several functions for maximum likelihood estimation of various univariate and multivariate distributions. The list includes more than 100 functions for univariate continuous and discrete distributions, distributions that lie on the real line, the positive line, interval restricted, circular distributions. Further, multivariate continuous and discrete distributions, distributions for compositional and directional data, etc. Some references include Johnson N. L., Kotz S. and Balakrishnan N. (1994). "Continuous Univariate Distributions, Volume 1" <ISBN:978-0-471-58495-7>, Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). "Univariate Discrete Distributions". <ISBN:978-0-471-71580-1> and Mardia, K. V. and Jupp, P. E. (2000). "Directional Statistics". <ISBN:978-0-471-95333-3>.
Function multiroc() can be used for computing and visualizing Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC) for multi-class classification problems. It supports both One-vs-One approach by M.Bishop, C. (2006, ISBN:978-0-387-31073-2) and One-vs-All approach by Murphy P., K. (2012, ISBN:9780262018029).
This package provides a set of functions to investigate raw data from (metabol)omics experiments intended to be used on a raw data matrix, i.e. following peak picking and signal deconvolution. Functions can be used to normalize data, detect biomarkers and perform sample classification. A detailed description of best practice usage may be found in the publication <doi:10.1007/978-1-4939-7819-9_20>.
Query, extract, and plot genealogical data from The Mathematics Genealogy Project <https://mathgenealogy.org/>. Data is gathered from the WebSocket server run by the geneagrapher-core project <https://github.com/davidalber/geneagrapher-core>.
Computing package for Multidimensional Poverty Index (MPI) using Alkire-Foster method. Given N individuals, each person has D indicators of deprivation, the package compute MPI value to represent the degree of poverty in a population. The inputs are 1) an N by D matrix, which has the element (i,j) represents whether an individual i is deprived in an indicator j (1 is deprived and 0 is not deprived), and 2) the deprivation threshold. The main output is the MPI value, which has the range between zero and one. MPI value is approaching one if almost all people are deprived in all indicators, and it is approaching zero if almost no people are deprived in any indicator. Please see Alkire S., Chatterjee, M., Conconi, A., Seth, S. and Ana Vaz (2014) <doi:10.35648/20.500.12413/11781/ii039> for The Alkire-Foster methodology.
Generation of synthetic data from a real dataset using the combination of rank normal inverse transformation with the calculation of correlation matrix <doi:10.1055/a-2048-7692>. Completely artificial data may be generated through the use of Generalized Lambda Distribution and Generalized Poisson Distribution <doi:10.1201/9781420038040>. Quantitative, binary, ordinal categorical, and survival data may be simulated. Functionalities are offered to generate synthetic data sets according to user's needs.
Hypothesis testing of the parameters of multivariate normal distributions, including the testing of a single mean vector, two mean vectors, multiple mean vectors, a single covariance matrix, multiple covariance matrices, a mean and a covariance matrix simultaneously, and the testing of independence of multivariate normal random vectors. Huixuan, Gao (2005, ISBN:9787301078587), "Applied Multivariate Statistical Analysis".
Fitting Multi-Parameter Regression (MPR) models to right-censored survival data. These are flexible parametric regression models which extend standard models, for example, proportional hazards. See Burke & MacKenzie (2016) <doi:10.1111/biom.12625> and Burke et al (2020) <doi:10.1111/rssc.12398>.
This package performs meaningful subgrouping in a meta-analysis. This is a two-step process; first, use the iterative grouping functions (e.g., mgbin(), mgcont() ) to partition studies into statistically homogeneous clusters based on their effect size data. Second, use the meaning() function to analyze these new subgroups and understand their composition based on study-level characteristics (e.g., country, setting). This approach helps to uncover hidden structures in meta-analytic data and provide a deeper interpretation of heterogeneity.